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The field of data compression and encoding has evolved into an ever-
growing and ever-important topic, with storage reductions becoming critical 
in an increasingly data-driven world. In face of these challenges, efforts 
must be put towards improvements in the techniques used in data 
compression. In our research, we explore the efficiency of existing encoding 
schemes for lossless unbounded integer compression, and present two new 
integer encoding schemes, δ-SFE and δ-RNS, that improve compression 
efficiency by combining the mathematical principles that existing 
algorithms use to generate prefix codes. We demonstrate the conformity of 
our algorithms to several benchmark evaluations of universality and 
asymptotic optimality, and show the potential advantages these coding 
schemes offer under certain circumstances based on our experimentation 
using datasets generated based on various probability mass functions. We 
further analyze the potential applications of these encoding schemes to key 
areas such as encryption due to the interchangeability of encoding order in 
δ-SFE and the usage of prime numbers in δ-RNS.
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OUR ALGORITHMS

In order to determine the performance of our algorithms, we have generated 4 different plaintext sets, each consisting of 10,000 positive integers following a 
specific distribution. Data set 1a, 1b, and 1c are all geometric distributions with a probability mass function of 𝑝 𝐺௜ = 1 − 𝑘 ீ೔ିଵ𝑘, where k1a = 0.5, k1b = 0.1, 

and k1c = 0.01. Data set 2 satisfies a Poisson distribution with probability mass function 𝑝 𝐺௜ =
ఒಸ೔௘షഊ

ீ೔!
, where 𝜆 = 128. Data set 3 consists of pseudo-randomly 

generated integers from 1 to 1,000. The pseudo-random number generator is derived from Python 2’s random library. For each data set, we will compare the 
performance of Canonical 𝛿-𝑆𝐹𝐸, Increment 𝛿-𝑆𝐹𝐸, Flagged 𝛿-𝑆𝐹𝐸, and 𝛿-RNS with entropy and Elias-𝛿.

METHODOLOGY AND RESULTS

Our results lead to some intriguing conclusions. Our various 𝛿-SFE resulted 
in greater performance than Elias-𝛿 in the vast majority of cases, with a 
greater distinction made in datasets centered towards greater numbers, such 
as in our Poisson distribution or our pseudo-randomly generated set. This 
performance approached close to entropy, with greatest compression usually 
accomplished by I𝛿-SFE. These results make these 𝛿-SFE algorithms 
competitive with conventional compression techniques in terms of practical 
compression efficiency. These 𝛿-SFE algorithms ultimately also offer 
unique advantages in their adaptability to dynamic data set distributions as 
well as the potential application to encryption due to the ability to rearrange 
the codewords for each symbol into any permutation. 𝛿-RNS performed 
better than Elias-𝛿 in our Poisson distribution test, and offers the potential 
for application to encryption due to the explicit usage of prime numbers, a 
primary component of several encryption schemes. Additionally, 𝛿-RNS has 
potential in expediting large-scale operations by splitting large integers into 
sets of smaller integers. Further tests with other datasets will be needed to 
determine the optimal usage of these various algorithms, as well as to 
determine the optimal k-value for the I𝛿-SFE encoding scheme.

[1] Elias, P. “Universal codeword sets and representations of the 
integers”.IEEE Trans. Inf.Theory21.2 (Mar. 1975): 194–203. Print.

[2] Javed, M. Y. and A. Nadeem. “Data compression through adaptive 
Huffman coding schemes”.2000 TENCON Proceedings(2000). Print.

[3] Katti, R.S. and A. Ghosh. “Security using Shannon-Fano-Elias 
codes”.2009 InternationalSymposium on Circuits and Systems(24-27 May 
2009). Print.

[4] Ruan, X. and R. Katti. “Using Improved Shannon-Fano-Elias Codes for 
Data Encryption”.2006 IEEE International Symposium on Information 
Theory(9-14 July 2006). Print.

[5] Tamir, D. “Delta-Huffman Coding of Unbounded Integers”.2018 Data 
Compression Con-ference(27-30 March 2018). Print.

Definition 1: An encryption scheme is a map P = (G, ρ), where G is a finite 
set of characters that consists of the alphabet and M is a finite set of 
characters that consists of the replacement characters for the alphabet. When 
applied to information, each element of the plaintext is mapped from its 
index in G to its corresponding element in ρ, producing the encrypted text. 
A probability mass function associated with an encryption scheme is 
denoted by p = (G, I), where I is the set of frequencies of the associated 
alphabet character in the given plaintext.

Definition 2: A lossless compression algorithm is an encryption scheme in 
which the encrypted text can be unambiguously translated back to the 
original plaintext. No information is lost in a lossless compression 
algorithm.

Definition 3: Entropy, denoted H(P), is the theoretical minimum average 
number of bits required to compress the symbols in the data set, given by

𝐻 𝑃 = − ෍ 𝑝௜ logଶ 𝑝௜

|௣|

௜ୀ଴

There exists no fixed encryption scheme that can perform better than the 
entropy.

Definition 4: A universal code is an encryption scheme that satisfies the 
condition that the ratio between the minimal codeword length for the 
present encoding scheme and the entropy is bounded by a constant. In other 
words,

𝐸௉(𝐿ఘ)

max (1, 𝐻 𝑃 )
≤ 𝐾ఘ

where Ep is the expected value of the length Lρ of one encrypted character.

Definition 5: An asymptotically optimal code is a code that satisfies the 
condition that the ratio Rρ between the minimal codeword length for the 
present encoding scheme is a bounded function that approaches 1 as the 
entropy approaches infinity. In other words,

𝐸௉(𝐿ఘ)

max (1, 𝐻 𝑃 )
≤ 𝑅ఘ 𝐻 𝑃 ≤ 𝐾ఘ

with
lim

ு→ஶ
𝑅ఘ 𝐻 = 1

Definition 6: Elias-γ is an encryption scheme that operates on 𝐺 = ℤା, the 
set of unbounded integers. If the length of the binary representation of an 
integer X is N bits, then we prepend N-1 zeroes to the binary representation 
of X to yield γ(X). It is known that Elias-γ is a universal encryption scheme, 
but not asymptotically optimal.

Definition 7: Elias-𝛿 is an encryption scheme that operates on 𝐺 = ℤା. If 
the length of the binary representation of an integer X is N bits, then we 
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Background: Define a function

𝐹 𝐺௫ = ෍ 𝑝(𝐺௜)

௜ழ௫
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The Shannon Fano Elias (SFE) encryption of the alphabet character Gx is then 

the first logଶ
ଵ

௣(ீೣ)
+ 1 bits to the right of the decimal point in the binary 

expansion of F(Gx). An additional optimization, known as truncation, can be 
made to the encryption scheme by erasing the last bit of each code ρi until the 
non-ambiguity condition for lossless compression is invalidated.

𝛿-SFE: Before any symbols of the plaintext are processed, let G = {NYT}, 
where NYT is a symbol that stands for “not yet transmitted.” Let AT be set of 
“already transmitted” symbols. Note that G is a dynamic alphabet, and thus the 
set ρ will also change as more symbols are processed. Our three variations of 𝛿-
SFE are defined as follows:

Canonical 𝛿-SFE

𝐶𝛿−𝑆𝐹𝐸(𝐺௜) = ቊ
𝑆𝐹𝐸 𝑁𝑌𝑇 + 𝛿 𝐺௜   𝐺௜ ∉ 𝐴𝑇

𝑆𝐹𝐸 𝐺௜                       𝐺௜ ∈ 𝐴𝑇

𝑝 𝑁𝑌𝑇 =
ଵ

௡ାଵ
, where n is the number of symbols (not necessarily unique) that 

have been processed so far.

Increment 𝛿-SFE

𝐼𝛿−𝑆𝐹𝐸(𝐺௜) = ቊ
𝑆𝐹𝐸 𝑁𝑌𝑇 + 𝛿 𝐺௜   𝐺௜ ∉ 𝐴𝑇

𝑆𝐹𝐸 𝐺௜                       𝐺௜ ∈ 𝐴𝑇

𝑝 𝑁𝑌𝑇 =
ଵାఈ௞

௡ାଵ
, where 𝛼 is the number of unique symbols processed and k is a 

predetermined constant. Through experimentation, it seems that k = 1 is most 
optimal. 

Flagged 𝛿-SFE

𝐹𝛿−𝑆𝐹𝐸(𝐺௜) = ቊ
𝛿 𝐺௜ + 1       𝐺௜ ∉ 𝐴𝑇

1 + 𝑆𝐹𝐸 𝐺௜  𝐺௜ ∈ 𝐴𝑇

A binary flag is used to differentiate between occurrences of new and repeated 
symbols.

Background: A residue number system (RNS) is a system where each positive 
integer 𝑥 is processed through a set of coprime moduli {𝑚ଵ, 𝑚ଶ, 𝑚ଷ, … , 𝑚௡}, 
taking 𝑥 𝑚𝑜𝑑 𝑚௞ for each 𝑘 ∈ (1, 𝑛). The resulting set {𝑟ଵ, 𝑟ଶ, 𝑟ଷ, … , 𝑟௡} is 
guaranteed to be unique for all

𝑥 < 𝑚ଵ𝑚ଶ𝑚ଷ … 𝑚௡.

In our tests, we used the set of prime numbers 𝑝 = {2, 3, 5, … } as our set of 
coprime moduli.

𝛿-RNS: In 𝛿-RNS, the Elias-𝛿 code is used to compress the numbers generated 
through RNS. First, 𝑦 is determined such that 𝑦 is the least integer such that 

𝑥 < ෑ 𝑝௕

௬

௕ୀଵ

This number is encoded through Elias-𝛿 coding and forms the start of the string. 
After determining 𝑦, the residues {𝑟ଵ, 𝑟ଶ, 𝑟ଷ, … , 𝑟௡} are determined and encoded 
in binary. Each of these residues 𝑟௞ is converted to binary and padded with 
zeroes in front to length logଶ 𝑝௞ to ensure uniformity. This code is UD and 
instantaneous. We have also shown it to be universal.

Additionally, due to the nature of a RNS, it provides many advantages in terms 
of computation, including fast and less resource-intensive operations for 
creation, addition, multiplication, and subtraction when compared to other 
encryption methods. These operations can be computed in parallel with a RNS, 
rather than sequentially, as they can be directly applied to each residue 
independently. Additionally, sequences of operations are much faster because 
the modulus of each residue in the system need only be calculated once at the 
end of a sequence of operations to produce a final set of residues. However, 
operations such as division and square roots will be more difficult and 
inefficient.

Due to the fact that a RNS processes each input independently, it produces 
longer bitstrings because it is not able to use previous information.

To evaluate the performance of 𝛿-RNS further, we compared it with Elias-𝛿 over a range of integers from 0 to approximately 2ଷଶ. As can be seen from the graph, 𝛿-
RNS provides similar performance to Elias-𝛿 in bitstring length.


