Enhancing sSEMG-based Movement Recognition
Using Data Augmentation: An Empirical Study

Anonymous Authors

Abstract—Surface Electromyography (SEMG) is a non-invasive
technique which may be leveraged in prostheses to improve
quality of life for amputees. To address the significant huddle
of limited SEMG data availability for the success of machine
learning, this study provides an empirical evaluation of random
transformation, pattern mixing and generative time series data
augmentation techniques applied to SEMG signals of individual
finger movements of four test subjects. We evaluate augmentation
methods using two state of the art deep neural networks
and a classical machine learning approach, targeting improved
classification accuracy in three models: LSTM, TCN and XGB.
We search for the most effective model, augmentation ratio and
augmentation method. In addition to this, we analyze the impact
of data availability on augmentation techniques by limiting the
amount of data used training. Our results suggest a classical
machine learning model, XGB, is the most effective approach
to modeling individual finger movements, independent of the
amount of data available during training. The results, too,
suggest a naive, random transformation augmentation technique
is generally more effective than more complicated approaches
such as generative and pattern mixing.

Index Terms—Data augmentation, movement recognition,
sEMG signals, time series.

I. INTRODUCTION

A 2005 study found that 1.6 million persons were living
with a missing limb in the United States and projected that
number to more than double by 2050 [1]]. There are 50,000
to 100,000 new amputations per year, and of those, approx-
imately 7% (3,500 to 7,000) occur at the hand or wrist [2].
For those afflicted with such a disability, robotic prostheses can
be of substantial value. For example, control of the prosthesis
can be provided to the user using surface Electromygraphy
(sEMG) sensors. SEMG is a non-invasive technique to acquire
myoelectric signals [3]. These signals capture a user’s intent
to contract a part of the body (e.g. finger, toe, hand). Studies
have found myoelectric powered prostheses to be rejected by
amputees at rates ranging from 0% to 75% with complaints
including excessive weight, comfort, lack of function and
durability [4].

Myoelectric prostheses which are more functional are re-
quired to lower the rejection rates of these devices and improve
quality of life for amputees. A critical step in facilitating such
innovations is developing methods to recognize individual fin-
ger movements. However, to date, the majority of hand sSEMG
classification research has focused on hand gesture or multi-
finger movement recognition [5]], [[6]. Moreover, many robotic
prostheses [7]—[9] rely on conventional SEMG sensors with flat
electrode pads which are held in place using a band [10] or
adhesive [11], but tend to be uncomfortable or poorly affixed

to the skin [[12]. Such configurations, however, are susceptible
to electrode shift which may affect the signals acquired by
each electrode [[13]] and, thus, adversely affect control of the
prosthesis. Therefore, in this work, we focus on individual
finger movement recognition based on nano-sEMG signals
collected from subjects’ antebrachium (forearm) as shown in
[12], with a sensor that may be directly embedded onto the
user’s skin and is held in place using only van der Waals
forces [[12]], which eliminates the potential of electrode shift
and any potential discomfort of bands or adhesive materials.
In addition to this, the sensor we study can withstand daily
activities such as bathing and exercising [12]], increasing the
practicality of integrating a prosthesis into the daily life of a
user.

To automate the finger movement recognition in real time,
machine learning techniques can be adopted. It is well known
that machine learning algorithms often require sufficiently
large training data to successfully generalize to the target pop-
ulation. One major challenge in individual finger movement
recognition using nano-sEMG is limited training data, due to
the fact that collecting SEMG data requires expertise, human
supervision, and a considerable amount of time.

Data augmentation is a technique that has yielded great
performance gains in, most notably, computer vision [14].
Time series data augmentation, on the other hand, has received
significantly less attention. A recent survey [14]] proposed a
taxonomy of time series data augmentation techniques with
four (4) distinct approaches: random transformation, pattern
mixing, generative models, and decomposition. Ordinary time
series data augmentation involves randomly transforming the
signals. These transformations include Gaussian noise injec-
tion, time warping, frequency warping, magnitude warping,
scaling, permutation, cropping, and flipping or rotating sig-
nals (e.g. [15], [16]]). Pattern mixing techniques produce a
synthetic sample by combining two or more samples (e.g.
[17], [18]). Generative models augment datasets by extracting
features from samples and using those features to construct
new samples (e.g. [[19]-[25]]). Finally, decomposition methods
decompose samples into features which are used to create new
samples (e.g. [6], [26]). Furthermore, [14] provides an evalu-
ation of random transformation and pattern mixing techniques
on an array of time series datasets using several well known
neural network architectures. However, this survey does not
evaluate an sSEMG dataset or a GAN, the models used are
not tuned for each dataset, and the accuracy improvements
presented are limited using the evaluated augmentation tech-
niques. Our study focuses exclusively on an SEMG dataset,

evaluating a DCGAN [20] on said data, tuning each of our
models to our dataset to maximize classification accuracy,
and demonstrating considerable performance improvements
using augmentation. Additionally, while [14] considered only
artificial neural networks (ANNSs), we evaluate our dataset on
two state of the art ANNs and a classical machine learning
model, and find the latter to be the most performant.

Several works have evaluated the performance of augmenta-
tion techniques on SEMG data. sSEMG simulation models have
been introduced in [27]-[29]. Problems with these models in-
clude: 1) the signals they generate depend upon many domain-
specific variables, which requires a solid understanding of their
meaning [20]], and 2) the validation of said models is challeng-
ing [30]. The effects of Gaussian noise applied to sSEMG hand
gesture movements [31] was evaluated on a simple convolution
neural network (CNN) in [32]. Two generative adversarial
networks (GANs) have also been proposed for sEMG data.
In [20] a DCGAN with Style Transfer is used to augment a
Parkinson’s Disease dataset by transforming SEMG samples
collected from healthy subjects into data closely resembling
those of the Parkinson’s data. More recently, another GAN
variant was proposed in [21]]. Furthermore, a thorough survey
and evaluation of time series data augmentation for deep neural
networks is available in [14]. In [6] wavelet decomposition,
two simulation models, a random transformation method,
and three (3) random combination methods are evaluated
on two CNNs. To date there is no work which provides a
thorough analysis of current state of the art data augmentation
techniques on an SEMG dataset.

Random Generative Model

Transformation

Pattern Mixing

Gaussian Noise DCGAN [20] SPAWNER [17]
Window Slicing - -

TABLE I: Summary of data augmentation techniques, orga-
nized by taxonomy family (see [14]), evaluated in this study.

[[Deep Model [[Classical Model 1]
LSTM [33534] XGB [35]
TCN [36] -

TABLE II: Summary of architectures evaluated on our sSEMG
dataset in this study.

We propose a comprehensive comparison study of current
state of the art time series augmentation methods for on SEMG
data of individual finger movements for real-time applica-
tions. We are interested in studying the impact augmentation
has on classification accuracy and how the amount of data
available affects the gains yielded by augmentation. To this
end, we evaluate a subset of augmentation techniques from
each taxonomy family, with exception to decomposition. The
selected augmentation techniques may be found in table [I|
Each method was selected because either it showed promising
results in previous studies (e.g. SPAWNER, DCGAN) or is
a typical method applied in SEMG/time series (e.g. Gaussian

Noise, Window Slicing). The models we chose to evaluate
each augmentation technique may be found in table [lI} Each
of these models are state of the art.

II. AUGMENTATION METHODS

In this section, we formally describe each of the data
augmentation methods we evaluate.

A. General Augmentation Algorithm Description

The input to each augmentation algorithm, the SEMG data
of an individual finger movement, may be formalized as a
sequence of 7" time steps, each of which containing F' features.
Note, because we record our data with a single channel, the
number of features per timestep F' is one (1). Specifically, we
denote an individual sample as * = xg, 21, - - , Ts—1 Where x;
is a vector containing the features recorded at timestep ¢. Each
augmentation method accepts an individual finger movement
x as an input and outputs a synthetic sample with the same
shape as z. More formally, the output of each augmentation
algorithm is & = 2,21, --,2¢+—1 where &; is a vector
containing the features of the synthetic sample at timestep ¢
containing the same number of features as the input x;.

B. Gaussian Noise

Gaussian noise is a common way to augment signal process-
ing data sets [6]], [14]-[16], [32]. Another common name for
this augmentation technique is jitter’ or jittering’ [[14]. The
idea is to inject random samples from a Gaussian (Normal)
distribution into an authentic sample to produce a unique
synthetic sample. The implicit assumption here is that signal
noise follows the Gaussian distribution: N(u, o). We choose
¢ = 0 to minimize deviation from the original sample.
o is slightly more challenging to define because nominal
values will yield synthetic samples which closely relate to
the originals (and thus a model which overfits the training
set). In contrast, larger values will increase the signal to noise
ratio to obfuscate the interesting parts of the signal (and thus
an underfitting model). Our model of Gaussian noise is as
follows:

v
SNR
where x; is the ¢th timestep of the sample for which we
produce a synthetic sample and SNR is the signal to noise
ratio. Signal to noise ratio will be an explored free variable in

our experiments.
We generate a synthetic for this method following

N(/LZO,O':

T =mzo+no,x1+n1, ,Te-1+ N1

where zx is the original finger movement sample and n is a
vector containing 7" random samples from the aforementioned
Gaussian distribution.

C. Window Slicing

Window Slicing or slicing is an augmentation technique
which generates a synthetic by cropping a window W of
consecutive time steps of a signal [37]]. Specifically, a synthetic
sample Z is produced from z by

L= Twy Lw41s oy Lw+W—1

where w € N such that 0 < w < W —-T — 1, T is
the number of time steps in =, and W < T. Note when
W =T the synthetic sample is identical to the original. For
our experiments, we use a ninety percent (90%) window and
interpolate the resulting synthetic such that it has the same
number of time steps as the original sample.

D. SPAWNER

SPAWNER aligns two signals Xo = [z, 23, -+ , 28], X1 =
[#1,2%,--+ ,27"] via Dynamic Time Warping (DTW) [38].
DTW computes the minimal alignment path between X,
and X; or the warping path. The warping path is found
by computing the element-wise cost matrix C' using some
arbitrary distance metric (e.g., Euclidean Distance). We use
L1 loss as

Cli, j] = |z —)| +min(Cli—1, 4], C[i,j—1],Cli—1,j—1))

DTW assumes the first points and last points of both sequences
are aligned and yields warping paths with monotonically in-
creasing indices. To reduce computational overhead, a warping
window £ is used to limit the temporal advance and temporal
delay of the alignment. We use 10 percent of the longest se-
quence (i.e., £ = [maz(n,m)/10]). Note that in our work, all
sequences have the same length by front padding zeros to sam-
ples where necessary. In addition to the assumptions made by
DTW, SPAWNER assumes a randomly selected point (exclud-
ing end points) from X, and X; are aligned. More formally,
SPAWNER forces the warping path to contain C, = (Rg, R1)
where Ry = [rn], Ry = [rm] and r is uniformly distributed
random number between O and 1. This is accomplished by

computing two alignments. First, X§ = [z§, 22, -- , 20~]
is aligned with X9 = [z],2},--- 27 '] Then,

Xé — [zn—Ro-‘rl’zn—Ro-‘rQ

n g oo+, xf] is aligned with X =
m—R1+1 _m—Ri+
[z7 » L1

,o-+,a]. The alignments yielded by
X9 and X are concatenated together yielding X;. Similarly,
XYV and X{ are concatenated together yielding X;. X and
X7 are then merged using their means. Finally, we inject
Gaussian Noise on top of the aligned sample using a small
ocas N(u=0,0=1x10"7).

E. EMG-GAN

Generative Adversarial Networks (GANs) [22]] are com-
prised of two networks, a discriminator D and a generator
G. The generator produces synthetic samples by encoding the
samples into a latent space z. The discriminator, on the other
hand, distinguishes between real and fake samples for a dataset
x. The network plays a minimax game during training

minmax V(G, D) = By, () 108 D(@)] + Eznp. (2 [log(1 — D(G(2)))]
(D

EMG-GAN [20] adapts the Deep Convolutional GAN (DC-
GAN) [19]], which was developed for a computer vision
task, to the time series domain and we make use of their
work| here. The generator accepts two-hundred (200) timesteps
from an original sample as input and consists of six (6)
convolutional blocks. Each convolutional block begins with a
one dimensional convolutional layer and is followed by a batch
normalization layer before being activated by ReLU. Addi-
tionally, after the first three convolutional blocks, upsampling
is performed. After the last convolutional block, a flattening
layer and a fully connected hidden layer are activated with
the hyperbolic tangent (tanh) function. Finally, an output layer
selects the value for each time step. The architecture may be
found in figure

The discriminator network uses a pattern similar to the
generator, however it leverages four (4) convolutional stacks.
Each stack is comprised of four (4) convolutional layers,
each of which having one dimensional convolutional, batch
normalization and drop out layers activated by Leaky ReLU.
The input to each stack is what differentiates them. The raw
input signal, Fast Fourier transform (FFT), signal envelope,
and a two-level discrete wavelet transformation (DWT) using
the Daubechies wavelet db7 as wavelet mother are used as
inputs to the stacks. Furthermore, a mini-batch discriminator
[39] is used in the network to address mode collapse. The
architecture may be found in figure

This technique is impractical for our real time individual
finger movement identification application for two reasons.
First, each EMG-GAN is trained to generate synthetic samples
for a single class. Our classification task involves five (5)
classes. To generate new samples for each class would thus
require the training of five (5) distinct GANs. Second, training
a single EMG-GAN takes a considerable amount of time.
However, we evaluate this technique to compare with pattern
mixing, random transformation and combination methods.

F. Random Combinations

Inspired by the work of [6] we investigate the effects of
a random combination method that mixes pattern mixing and
random transformation methods. Pattern mixing techniques are
computationally expensive because they depend on DTW. The
method constructs a sample by selecting the pattern mixing
method with probability p and the random transformation
technique with complement 1—p. Note only one augmentation
method is used to construct a single sample. We consider
two combinations: 1) SPAWNER and Gaussian Noise 2)
SPAWNER and Window Slicing.

Specifically, according to the desired ratio of augmentation
v, we aim to get a synthetic data set of size y/N, where NV
is the total number of examples in the SEMG training data
{X;, v} . X, is the i-th signal and y; is the signal’s finger
class (e.g., ‘pinky’). By distributing different augmentation
numbers for each finger class, augmentation can also help
solve the class-imbalance problem during the training. Mo-
tivated by this, we can calculate the total number of training
examples after augmentation as (y+1)N. Then, with k finger

https://github.com/larocs/EMG-GAN
https://github.com/larocs/EMG-GAN

convL CoNV2

Input conv3
200 200
Up Sampling
400
Up sampling
800

Up Sampling

coNva cor CONVE D

|I:>||::> :>:>

(a) DCGAN generator architecture which accepts timesteps from a
finger movement as input and applies a sequences of one dimensional
convolutions, up-sampling, batch normalization and a final dense layer.

Output

= = =) ==] =
ad - b
-m-A AN
78 L
=) Ry =)
/4
forten B o
v
L J
Y
(Convolutional Blocks
conat

Output

1600

Input

I:“> Wavelet |::> 72

T

(b) DCGAN discriminator architecture extracts four features before
applying four blocks consisting of four convolutional layers, batch
normalization and activation layers. The last convolutional layer in
each block applies 16 or 32 filters depending on the input feature.
All extracted feature maps are flattened and merged prior to passing
through a dense layer with sigmoid activation.

Fig. 1: Architectures of DCGAN generator [la] and discrimi-

nator @

classes, the number of augmented examples for the j-th class
can be easily calculated as (y+1)N/k — N;, where N; is the
number of original training examples of the j-th class. Note
that - should be large enough such that (y+1)N/k— N, does
not yield a negative for each class j.

Next, we randomly select (y+1)N/k—N; samples from the
corresponding class to perform data augmentation. Note when
N; < (y+1)N/k— Nj, one or more samples will be used at
least twice to achieve our target number of synthetic samples.
Additionally, pattern mixing requires a reference sample for
mixing as described in the above subsection (II-D). During
the procedure, the reference sample is randomly obtained
from the same finger class. However, we ensure that the
reference sample is not the augmentation sample, and once
X; and X; have been mixed once, they will not mix again.
Most importantly, for each augmentation sample, we set a
probability p to generate a synthetic sample using a random

Algorithm 1 Random Combination

1: Input: sEMG Data set {X;,y;}Y ,, augmentation ratio -,

probability p to use random transformation

Output: Synthetic Data set Syns

Initialize Syns +

Initialize sampsToAug + 0

for each finger class j =1 to k£ do
sampsToAug < Randomly sample (y+ 1)N/k — N;
from class j

7: end for

8: for each X; € sampsToAug do

9: rand < random value s.t. 0 < rand <1

AN

10: if rand < p then

11: Syns < RandomTransformation(X;)
12: else

13: Sample X, from the finger class of X;
14: Syns < PatternMixing(X;, X,)

15 end if

16: end for

17: return Syns

transformation method, otherwise the pattern mixing algorithm
is applied. Algorithm [T] summarizes the procedure.

1II. EVALUATION

In this section, we introduce the models we evaluate,
describe our dataset, and present the results of our study.

A. Models

1) Gradient Boosting: Gradient Boosting is an ensemble
method that makes use of Decision Trees. This classifier is
trained using the Boosting methodology. In Boosting, K clas-
sifiers are trained (of arbitrary type) sequentially with sample
weights, where K is a hyperparameter. The sample weights are
uniformly initialized. After each iteration, samples that were
misclassified are given additional weights. Gradient Boosting
uses gradient descent to calculate the hyperparameters of the
next Decision Tree by moving along the gradient of the loss
function.

We leverage XGBoost library’s implementation of Gradient
Boosting (proposed in [35]) with the default parameters to
evaluate the dataset. Each Gradient Boosting classifier per-
forms one-hundred rounds of boosting with a learning rate of
0.3, growing a tree to a maximum depth of six during training.

2) Long Short-Term Memory: Long Short-Term Memory
(LSTM) is a specialized Recurrent Neural Network
(RNN) which learns long term patterns in temporal data
[40] by choosing what to remember and forget at each time
step. The LSTM expands on the basic RNN’s concept of
memory by passing a memory cell along each time step
[40]. The memory cell is updated at each time step via three
distinct gating units: forget gate, input gate, and output gate
[40]. Bidirectional LSTM (BLSTM) [34] introduces backward
recurrent connections to learn temporal patterns by walking
backward through each time step.

https://xgboost.readthedocs.io/en/latest/python/python_api.html

Our BLSTM is constructed with the Keras| backend. Each
model has two BLSTM layers, each outputting thirty-two (32)
units after being activated by the hyperbolic tangent function
(Tanh) and L2 regularization (0.05). The first of these BLSTM
layers pass the previous state as an input to the second BLSTM
layer. The output of the second BLSTM layer is passed to
a batch normalization layer before a sixteen (16) neuron
hidden layer activated by the rectified linear activation function
(ReLU). The final layer is a fully connected layer with five
(5) neurons (one for each finger) activated by the softmax
function. The model uses the Adam optimizer to optimize
categorical cross-entropy with gradient clipping to address the
exploding gradient problem (clipnorm = 0.5) and an initial

learning rate of 0.001. The learning rate is scaled by — every

100 epochs. Each model is trained for eight hundrec6i (800)
epochs with a batch size of 128. Henceforth we will refer to
BLSTM as LSTM unless otherwise explicitly stated.

3) Temporal Convolutional Network: Temporal Convolu-
tional Networks (TCN) [36] is a causal, one dimensional,
fully-convolutional network (FCN) [41]]. Here causal implies
the use of causal convolutions, which only convolve previous
time steps. This prevents any leakage of future information to
the past. The second critical component of TCNs is dilation
which increases the receptive field of the network. The dilation
factor increases as a function of depth of the network 2¢ where
k is the depth of the network. Furthermore, this network makes
use of residual connections [42] which enables layers to learn
modifications to identity mappings [36[]. See [2| for a visual
representation of dilated casual convolutions and how residual
connections are leveraged in TCN.

Our TCN consists of four FCNs with sixteen (16) features
per input timestep. For example, if the input sequence were
to contain forty (40) timesteps, each FCN would contain
40 * 16 = 640 neurons. The features extracted from the FCNs
are flattened into a one dimensional vector and are batch
normalized. Next, we dropout thirty percent (30%) of the
neurons before the output layer (with five (5) neurons). We
train our model for three-hundred (300) epochs and optimize
with Adam regularized with 0.001 L2 weight decay. We apply
Cosine Annealing [43]] over the entire cycle (300 epochs).

We found replacing rectified linear unit (ReLU) with scaled
exponential linear units (SELU) [44] and adding batch normal-
ization after each temporal block yielded considerable model
accuracy gains. Additionally, we replaced the random uniform
weight initialization with the method presented in [45].

B. Data Description

We have collected the individual finger movements of four
subjects including male and female. It should be noted that
three of the subjects used their left arms, while the right
arm was used by the remaining one. Data is collected by
an epidermal electronic system (EES) proposed in [12]]. The
device records single-channel data at 250 Hz via an Android
application over Bluetooth transmission. Data acquisition con-
sisted of completing N individual finger flexions at regular
time intervals, where NV varied for each subject. We then apply

do G G2

,/ // L~
// // //
- - -
7 =7 =7
7 i / / {
/ f ,’/ / /
/ / / / /
/ / / /
/ / / / [|
/ / / / /!

g T1 Ig

d=1

/ ' Input

Ip_gTp_1 X7

(a) Architecture of dilated casual convolution with dilation factors d =
1,2,4 and filter size k = 3.

2y
Convolutional Filter "
Identity Map (or 1x1 Conv)
A /
g I ZIp—1 L7

(b) TCN residual connection example. The blue lines are convolutional
filters in the residual function with the green lines representing the
identity mappings.

Fig. 2: Components of the TCN with images borrowed from
[36].

three pre-processing steps (i.e., data cleaning, data filtering and
smoothing, individual finger movement detection) to prepare
the data for the supervised individual finger movement classi-
fication task ahead.

Data cleaning is applied by removing noise and null values.
Noise in our case may be a considerable number of timesteps
before the first finger flexion. Preceding noise accumulates
when the test subject pauses after initiating acquisition before
beginning the experimental procedure. An example of noise
can be seen in Fig. [3| Then, we apply data filtering in three
steps to prune unwanted noise and smooth the signal. Note that
the noise we are filtering here differs from the noise removed
in the data cleaning step. Here we are referring to both
electrical noise and signal drift. Electrical noise is seemingly
random and distorts signals of interest while drift can be seen
in figure 3] as the signal value decreases approximately linearly
with time. The first filtering step involves applying a first-order
Butterworth Bandpass filter and extracting the high output as
shown in figure 4] We then use a Hilbert transform to extract
the upper envelope of the signal. Lastly, a second polynomial
order Savitzky-Golay filter [46] is applied to smooth our data.

Finally, we need to split the individual finger movements,
which is also a necessary step for real-time movement detec-
tion. To do this, we start by finding each of the positive peak

https://keras.io/

1.00E-02

5.00E-0x

0.00€+0

1000

-5.00E-0

-1.00E-0

-150E-02
-2.00E-02
-2.50E-02

-3.00E-02

Fig. 3: A plot of raw acquisition data highlighting unwanted
noise.

Butter Bandpass Filtered Response

Amplitude (V)
° ~

|
o

0 20 40 60 80 100 120
Time (sec)

Fig. 4: The high output of a Butterworth Bandpass filter.

le-5 Peaks of Filtered Si

80 100 120

o 20 0 60
Time (secs)

Fig. 5: A visualization of the midpoints between each peak.

1.50E-05
1.00E-05
5.00E-06

0.00E+00
300

-5.00E-06
-1.00E-05

-1.50E-05

Fig. 6: An example of one of the extracted individual finger
movements.

values in our signal as shown in Fig. ??. Peaks are discovered
via thresholding, where the threshold is the average value of
our data (i.e., the output of the Savitzky-Golay filter). Next,
we find the mid-point between each two peaks (Fig. [5)) to cut
each movement out. An individual signal is depicted in Fig.

Test Subject 0 Counts - Augmentation Method None Test Subject 1 Counts - Augmentation Method None

ount
count

Thumb Thumb Index Middle Ring

dass

Index Middle Ring Pinky

dass

Pinky

(b) Subject 1.

Test Subject 3 Counts - Augmentation Method None

(a) Subject 0.

Test Subject 2 Counts - Augmentation Method None
20

200

150

count
count

100

0
Thumb

Middle Ring
dass.

(d) Subject 3.

Index Pinky

0
Thumb

Middle Ring
dass.

(c) Subject 2.

Index Pinky

Fig. 7: Extracted finger movement counts of for each subject.

Fig. [7] summarizes the number of finger movements detected
for each subject using the above strategy.

It should be noted that each signal obtained from this
procedure can be of different lengths. Table [III] provides a
statistical summary of the sample lengths by test subject.
However, considering the signal strength, it is reasonable to
pad zeros on either end of the samples to have the same length
for all movements. Furthermore, we leave our signal in time
domain for classification considering our real time application
and the order of time to necessary to convert to the frequency
domain using FFT is O(N log,(N)).

[[Subject | Max | Mean | Sud | Min /]
TS 0 441 383.54887 | 22.96217 256
TS 1 488 366.86311 | 49.30736 214
TS 2 424 365.71029 | 29.70054 255
TS 3 446 376.34453 | 26.56463 209

TABLE III: Statistical summary of individual finger movement
sample lengths by subject.

C. Setup

To fairly evaluate the selected models we use fixed, stratified
splits across all experiments. We train our models with 5-
fold cross validation and evaluate performance on a holdout
set. To evaluate the impact of data availability on each data
augmentation method, we vary the size of the holdout set.
We use the following five (5) holdout percentages: 10%, 30%,
50%, 70%, and 90%. Because we have four (4) test subjects,
we then have a total of twenty (20) sets of data we evaluate,
each of which is divided into five (5) folds for cross validation.

Through ablation study we selected the range of augmen-
tation ratios to evaluate. Augmentation ratio is the ratio of
synthetic sample count to original sample count. We found the
benefits of augmentation to plateau at augmentation ratio 2.0
for a random forest classifier and two random transformation
methods (Gaussian Noise and Magnitude Warping).

D. Results and Discussion

1) Model Performance: In table we present observed
classification accuracy for each model by augmentation
method at augmentation ratio 2.0 on the 10% holdout dataset.
Each accuracy presented is the mean result of each of the four
(4) test subjects and each of the five (5) cross validation folds.
Model labels ‘XGB’, ‘LSTM’, and ‘TCN’ refer to Gradient
Boosting, Bidirectional Long Short-Term Memory and Tem-
poral Convolutional Network models, respectively. The best
result is presented in bold by classification model. Baseline
accuracies for each model may be found in the column labeled
‘No Aug’. The labels ‘RGS’, ‘SPA’, ‘GN’, and ‘WS’ are
used to denote the random combination of SPAWNER and
Gaussian Noise, SPAWNER, Gaussian Noise, and Window
Slicing augmentation methods, respectively. From this table
three interesting observations may be made. First, the Gradi-
ent Boosting model outperforms the neural network models
with and without augmentation. Even with augmentation, the
two neural networks often do not surpass the baseline XGB
model. The one exception to this is the TCN model with
RGS augmentation which only marginally beats XGB without
augmentation. Second, the application of each of the evaluated
augmentation methods facilitated the development of a model
with greater ability to generalize. Third, the most performant
augmentation method for each model involved a pattern mix-
ing technique. The random combination of Gaussian Noise
and SPAWNER (RGS) resulted in the greatest gains for both
TCN and XGB, while SPAWNER assisted best for the LSTM.

Table [V| compares classification accuracy achieved by each
model for various holdout set percentages (i.e. varying the
number of samples used to train the classification model).
For each model and holdout percentage we present mean
accuracy with the most effective augmentation method, the
name of the augmentation method used and results without
augmentation. The augmentation ratio applied for the results
which are presented was 2.0. Accuracies reported are the
mean of each of the four (4) test subjects and the five (5)
cross validation folds. The best results are reported in bold
by holdout percentage. A number of observations may be
made from this table. First, the Gradient Boosting model
dominates the other two models across all holdout percentages,
with and without augmentation. Second, the TCN consistently
outperforms the LSTM with and without augmentation. A
third interesting observation, both XGB and TCN, using only
50% of the available data and the most effective augmentation
method, are able to achieve nearly the same performance as
augmentation with 90% of the data used for training. The
XGB’s mean result with RGS at holdout percentage 50%
differs by only 0.236%. We may also observe the pattern

mixing techniques were most impactful in general for these
models. The XGB model prefers RGS for holdout percentages
10, 30, 50, and 70, while TCN prefers RGS for 10 and SPA
for 30, 50, 70, and 90. The LSTM is less consistent in this
respect as it prefers SPA for holdout percentages 10, 30, and
70, GN for 50, and RGS for holdout 90. These LSTM results
seem to be inline with [14]] which also observed mixed results
for augmentation on their LSTM. Lastly, the XGB model
preferred WS at 90% holdout and received an approximate
18.4% accuracy improvement, while TCN and LSTM only
saw around 13.7% and 7.5% improvements, respectively. WS
was only applied to XGB, so it is possible that the LSTM and
TCN models would similarly benefit from WS at this holdout
percentage.

2) Augmentation Method Performance: We evaluate aug-
mentation ratio using the XGB model and the 10% holdout
dataset in table Augmentation ratio is evaluated in the
inclusive range of 0.0 to 2.0 in increments of 0.25. Accuracies
reported are the mean of each of the four (4) test subjects and
the five (5) cross validation folds. The best results are reported
in bold by augmentation ratio. The results indicate each of the
evaluated augmentation techniques improve the XGB model’s
ability to generalize for each of the augmentation ratios on our
sets of data. We observe for augmentation ratios less than or
equal to 1.0, Gaussian Noise outperforms the more informed
SPAWNER method. However, for augmentation ratios greater
than 1.0 SPAWNER bests Gaussian Noise. We also observe
the random combination of Gaussian Noise and SPAWNER
outperforming each of the other methods more often than not.
Interestingly, we find Window Slicing to be the best method
for two of the larger augmentation ratios (i.e. 1.5 and 1.75).

In table we study the impact of each augmentation
method on the XGB model with varied amounts of available
training data. Augmentation ratio was fixed at 2.0. Each
accuracy reported is the mean of our four (4) test subjects
and the five (5) cross validation folds. Similar to our previous
observations, we find each evaluated augmentation method
improves generalization of the XGB model. Next, we observe
the random combination method and window slicing to be the
two most impactful methods across the holdout percentages.
The random combination method is found to me most effective
at holdout percentages 10, 30, and 70, while Window Slicing
is dominant at 50 and 90. The most staggering result found
in this table is the relative performance of Window Slicing
at 90% holdout. We observe nearly a 5.3% advantage over
the next closest method (RGS). Whereas the results of the
augmentation methods differ at most by approximately 2.0%
for all of the other holdout percentages.

In table mean accuracies are presented by test subject
and augmentation method for augmentation ratio 2.0 on the
10% holdout dataset. We evaluated a generative augmentation
technique, DCGAN, on a single subject and holdout percent-
age due to the impracticality of this approach on our dataset
described in section and the relatively poor results we
observed. While the DCGAN results indicate an improvement
over the baseline, it is the least effective method of those

[Model | No Aug RGS [SPA [GN [WS I
XGB 0.95235 £ 0.04372 0.97984 + 0.02310 0.97752 £ 0.02486 0.97504 £ 0.02617 0.97702 £ 0.02443
LSTM | 0.81712 £0.12133 0.86385 £ 0.07545 0.88893 + 0.06274 0.85848 £ 0.07311 -
TCN 0.91236 £ 0.06445 0.95302 + 0.04385 0.94760 £ 0.04789 0.94229 £ 0.04374 -

TABLE IV: Accuracies for each model and augmentation method for 10% holdout dataset. Each reported accuracy is the mean
of each of our four (4) test subjects. The best performing augmentation method is presented in bold for each model. The
augmentation ratio used for each augmentation method was 2.0.

XGB LSTM TCN
Holdout % No Aug | Aug [Method No Aug | Aug [Method No Aug | Aug [Method |

10% 0.95235 + 0.97984+ RGS 0.81712 £ 0.88893 + SPA 0.91236 + 0.95302 + RGS
0.04372 0.02310 0.12133 0.06274 0.06445 0.04385

30% 0.93714 + 0.97804+ RGS 0.77201 £ 0.86657 £ SPA 0.90639 £+ 0.95050 £+ SPA
0.04477 0.02623 0.11657 0.07867 0.06157 0.04082

50% 0.90015 + 0.97748+ RGS 0.79649 + 0.86813 + GN 0.86164 + 0.94362 + SPA
0.05545 0.02275 0.11619 0.07812 0.04563 0.04208

70% 0.80274 + 0.94711+ RGS 0.59066 + 0.77810 £ SPA 0.68302 + 0.90617 + SPA
0.08039 0.03712 0.14262 0.12785 0.05163 0.03098

90% 0.52775 + 0.79106+ WS 0.45756 £ 0.53219 + RGS 0.39009 + 0.52736 £+ SPA
0.05004 0.07671 0.07240 0.09780 0.04394 0.08426

TABLE V: Accuracies grouped by no augmentation (No Aug) and best augmentation method for each model and holdout
percentage. Each reported accuracy is the mean of each of our four (4) test subjects.

[[Aug Ratio | RGS [SPA [GN [WS 1]
0.00 0.95235 + 0.04372 0.95235 + 0.04372 0.95235 + 0.04372 0.95235 + 0.04372
0.25 0.96276 + 0.03029 0.96341 £ 0.02977 0.96445 + 0.02928 0.96089 + 0.03117
0.50 0.97271 + 0.02428 0.96430 £ 0.03101 0.97243 + 0.02430 0.97025 + 0.02943
0.75 0.97613 + 0.02423 0.96852 + 0.03159 0.97400 £+ 0.02408 0.97384 + 0.02448
1.00 0.97874 + 0.02063 0.97322 + 0.02567 0.97440 + 0.02493 0.97696 + 0.02439
1.25 0.97664 + 0.02633 0.97529 + 0.02535 0.97233 + 0.02578 0.97475 + 0.02654
1.50 0.97778 + 0.02334 0.97526 + 0.02605 0.97153 + 0.02808 0.97867 + 0.02496
1.75 0.97746 + 0.02550 0.97593 + 0.02785 0.97318 + 0.03004 0.97867 + 0.02485
2.00 0.97984 + 0.02310 0.97752 + 0.02486 0.97594 + 0.02617 0.97702 + 0.02443

TABLE VI: XGB accuracies for each augmentation ratio and method on 10% holdout. Each reported accuracy is the mean of
each of our four (4) test subjects.

[[Holdout % | No Aug [RGS SPA [GN [WS 1]
10% 0.95235 + 0.04372 0.97984 + 0.02310 0.97752 + 0.02486 0.97594 + 0.02617 0.97702 £+ 0.02443
30% 0.93714 + 0.04477 0.97804 + 0.02623 0.97646 + 0.02815 0.97446 + 0.02319 0.97617 + 0.02765
50% 0.90015 =+ 0.05545 0.97748 + 0.02275 0.96996 + 0.02748 0.97190 + 0.02766 0.97551 + 0.02454
70% 0.80274 %+ 0.08039 0.94711 + 0.03712 0.92897 + 0.05542 0.93946 + 0.04145 0.94623 £+ 0.04054
90% 0.52775 + 0.05004 0.73826 + 0.07390 0.72256 + 0.07249 0.72703 £ 0.08115 0.79106 + 0.07671

TABLE VII: XGB accuracies for each holdout percentage and augmentation method with ratio 2.0. Each reported accuracy is
the mean of each of our four (4) test subjects.

3) Impact of Sex: Another interesting observation found in
table is the relative difficulty of classifying the individual
finger movements of the female test subject (test subject zero
(0)). The mean baseline accuracy is approximately 88.4% for
the female subject while each of the males’ mean accuracies
are above 95%; nearly a 7% difference. Our experiments
demonstrate augmentation helps close this gap. However, it
seems accurately identifying SEMG signals is more challeng-
ing for female subjects than male subjects. Because of our
limited sample size (i.e. a single (1) female test subject and
three (3) male subjects), it is possible these results are not
representative of the populations of all males and all females.
However, other studies ([47[]-[50]]), too, have observed dif-
ferences in SEMG signals acquired from male and female
subjects.

we evaluated and the performance benefit is marginal. An
issue with the DCGAN for augmentation ratios greater than
1.0 is the generator provides a deterministic mapping from
state to action spaces (i.e. input to output). For this reason
augmentation ratios larger than 1.0 result in a training set
with duplicate synthetic values, similar to the up sampling
augmentation approach. Note duplicate synthetic values are
highly improbable for each of the other augmentation methods
due to their randomness and implementation details. We found
Gaussian Noise and SPAWNER each to have been one of
the most performant methods for one (1) of the four (4) test
subjects. The random combination of these two methods was
observed to be one of the most effective for three (3) of the
four (4) test subjects.

[Test Subject [Sex] No Aug RGS SPA [GN WS [DCGAN 1]
Test Subject 0 M 0.95336 = 0.98656 + 0.98419 + 0.98735+ 0.98656 + 0.95968 +
0.00901 0.00451 0.00559 0.00331 0.00354 0.01166
Test Subject 1 F 0.88438 + 0.94271+ 0.93750 + 0.93542 + 0.93854 + -
0.00856 0.00974 0.00974 0.01863 0.01622
Test Subject 2 0.98020 + 0.99010+ 0.99010+ 0.98614 + 0.98812 + -
0.01400 0.00000 0.00000 0.00886 0.00443
Test Subject 3 0.99145 + 1.00000+ 0.99829 + 0.99487 + 0.99487 + -
0.00855 0.00000 0.00382 0.00468 0.00468

TABLE VIII: XGB accuracies for 10% holdout for each test subject and augmentation method with ratio 2.0. Each reported

accuracy is the mean of five (5) cross validation folds.

IV. CONCLUSION

Surface electromyography (SEMG) has great potential to
improve the quality of life of amputees, however there is a
need for more advanced classification for SEMG equipped
prostheses to be more widely adopted. We have present an
analysis of data augmentation applied to an SEMG dataset
of individual finger movements to address limited data avail-
ability, a key issue faced when developing sSEMG prostheses
for the hand. We find the classical machine learning model
XGB to be most effective at capturing the distribution of our
dataset when compared to state of the art deep models. Fur-
thermore, while we do not find a single augmentation method
to consistently yield the best performance gains, we observe,
in the presence of sufficient data, the random combination
of pattern mixing and random transformation to be effective.
Finally, a more staggering result is the effectiveness of window
slicing which appears to improve as the amount of training
data available is reduced.

[1]

[2]

[5]

[6]

[8

=

[9]
(10]

REFERENCES

K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, and
R. Brookmeyer, “Estimating the prevalence of limb loss in the united
states: 2005 to 2050,” Archives of Physical Medicine and Rehabilitation,
vol. 89, no. 3, p. 422429, 2008.

M. P. Fahrenkopf, N. S. Adams, J. P. Kelpin, and V. H. Do,
“Hand amputation,” Eplasty, vol. 18, Sep 2018. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173827/

M. A. Cavalcanti Garcia and T. Vieira, “Surface electromyography: Why,
when and how to use it,” Revista Andaluza de Medicina del Deporte,
vol. 4, pp. 17-28, 04 2011.

E. A. Biddiss and T. T. Chau, “Upper limb prosthesis use and
abandonment: A survey of the last 25 years,” Prosthetics and Orthotics
International, vol. 31, no. 3, pp. 236-257, 2007, pMID: 17979010.
[Online]. Available: https://doi.org/10.1080/03093640600994581

P. Kaczmarek, T. Mankowski, and J. Tomczynski, “putemg—a surface
electromyography hand gesture recognition dataset,” Sensors, vol. 19,
no. 16, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/
19/16/3548

P. Tsinganos, B. Cornelis, J. Cornelis, B. Jansen, and A. Skodras,
“Data augmentation of surface electromyography for hand gesture
recognition,” Sensors, vol. 20, no. 17, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/17/4892

Ottobock. (2022) Ottobock bebionic hand. [Online]. Available:
https://shop.ottobock.us/Prosthetics/Upper-Limb- Prosthetics/bebionic/
bebionic-Hands- %26- Gloves/Ottobock-bebionic- Hand/p/BB1000~50_
B

Ossur. (2023) i-limb®quantum. [Online]. Available: https://www.ossur.
com/en-us/prosthetics/arms/i-limb-quantum

Taska. (2022). [Online]. Available: https://www.taskaprosthetics.com/
M. Gomez-Correa and D. Cruz-Ortiz, “Low-cost wearable band sensors
of surface electromyography for detecting hand movements,” Sensors,
vol. 22, no. 16, 2022. [Online]. Available: https://www.mdpi.com/
1424-8220/22/16/5931

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Prakash, B. Kumari, and S. Sharma, “A low-cost, wearable semg
sensor for upper limb prosthetic application,” Journal of Medical
Engineering & Technology, vol. 43, no. 4, pp. 235-247, 2019, pMID:
31414614. [Online]. Available: |https://do1.org/10.1080/03091902.2019.
1653391

W.-H. Yeo, Y.-S. Kim, J. Lee, A. Ameen, L. Shi, M. Li, S. Wang, R. Ma,
S. H. Jin, Z. Kang, Y. Huang, and J. A. Rogers, “Multifunctional
epidermal electronics printed directly onto the skin,” Advanced
Materials, vol. 25, no. 20, pp. 2773-2778, 2013. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201204426

A. Rainoldi, G. Melchiorri, and I. Caruso, “A method for positioning
electrodes during surface emg recordings in lower limb muscles,”
Journal of neuroscience methods, vol. 134, pp. 3743, 04 2004.

B. K. Iwana and S. Uchida, “An empirical survey of data
augmentation for time series classification with neural networks,”
PLOS ONE, vol. 16, no. 7, pp. 1-32, 07 2021. [Online]. Available:
https://do1.org/10.1371/journal.pone.025484 1

L. Huang, W. Pan, Y. Zhang, L. Qian, N. Gao, and Y. Wu, “Data
augmentation for deep learning-based radio modulation classification,”
2019.

T. T. Um, E M. J. Pfister, D. Pichler, S. Endo, M. Lang,
S. Hirche, U. Fietzek, and D. Kuli¢, “Data augmentation of wearable
sensor data for parkinson’s disease monitoring using convolutional
neural networks,” Proceedings of the 19th ACM International
Conference on Multimodal Interaction. [Online]. Available: http:
//dx.doi.org/10.1145/3136755.3136817

K. Kamycki, T. Kapuscinski, and M. Oszust, “Data augmentation with
suboptimal warping for time-series classification,” Sensors, vol. 20,
p. 98, 12 2019.

B. K. Iwana and S. Uchida, “Time series data augmentation for neural
networks by time warping with a discriminative teacher,” CoRR, vol.
abs/2004.08780, 2020. [Online]. Available: https:/arxiv.org/abs/2004.
08780

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
2015. [Online]. Available: https://arxiv.org/abs/1511.06434

R. Anicet Zanini and E. Luna Colombini, “Parkinson’s disease
emg data augmentation and simulation with dcgans and style
transfer,” Sensors, vol. 20, no. 9, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/9/2605

F. Coelho, M. F. Pinto, A. G. Melo, G. S. Ramos, and A. L. M.
Marcato, “A novel semg data augmentation based on wgan-gp,”
Computer Methods in Biomechanics and Biomedical Engineering,
vol. 0, no. 0, pp. 1-10, 2022, pMID: 35862582. [Online]. Available:
https://doi.org/10.1080/10255842.2022.2102422

1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” 2014. [Online]. Available: https://arxiv.org/abs/1406.2661

J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative
adversarial networks,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/c9efe5t26cd17ba6216bbe2a7d26d490-Paper.pdf

M. N. Fekri, A. M. Ghosh, and K. Grolinger, “Generating energy
data for machine learning with recurrent generative adversarial
networks,” Energies, vol. 13, no. 1, 2020. [Online]. Available:
https://www.mdpi.com/1996-1073/13/1/130

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173827/
https://doi.org/10.1080/03093640600994581
https://www.mdpi.com/1424-8220/19/16/3548
https://www.mdpi.com/1424-8220/19/16/3548
https://www.mdpi.com/1424-8220/20/17/4892
https://shop.ottobock.us/Prosthetics/Upper-Limb-Prosthetics/bebionic/bebionic-Hands-%26-Gloves/Ottobock-bebionic-Hand/p/BB1000~50_B
https://shop.ottobock.us/Prosthetics/Upper-Limb-Prosthetics/bebionic/bebionic-Hands-%26-Gloves/Ottobock-bebionic-Hand/p/BB1000~50_B
https://shop.ottobock.us/Prosthetics/Upper-Limb-Prosthetics/bebionic/bebionic-Hands-%26-Gloves/Ottobock-bebionic-Hand/p/BB1000~50_B
https://www.ossur.com/en-us/prosthetics/arms/i-limb-quantum
https://www.ossur.com/en-us/prosthetics/arms/i-limb-quantum
https://www.taskaprosthetics.com/
https://www.mdpi.com/1424-8220/22/16/5931
https://www.mdpi.com/1424-8220/22/16/5931
https://doi.org/10.1080/03091902.2019.1653391
https://doi.org/10.1080/03091902.2019.1653391
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201204426
https://doi.org/10.1371/journal.pone.0254841
http://dx.doi.org/10.1145/3136755.3136817
http://dx.doi.org/10.1145/3136755.3136817
https://arxiv.org/abs/2004.08780
https://arxiv.org/abs/2004.08780
https://arxiv.org/abs/1511.06434
https://www.mdpi.com/1424-8220/20/9/2605
https://doi.org/10.1080/10255842.2022.2102422
https://arxiv.org/abs/1406.2661
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://www.mdpi.com/1996-1073/13/1/130

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

C. Esteban, S. L. Hyland, and G. Ritsch, “Real-valued (medical) time
series generation with recurrent conditional gans,” 2017.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih,
Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical
mode decomposition and the hilbert spectrum for nonlinear and
non-stationary time series analysis,” Proceedings of the Royal Society
of London. Series A: Mathematical, Physical and Engineering
Sciences, vol. 454, no. 1971, pp. 903-995, 1998. [Online]. Available:
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0193

A. Furui, H. Hayashi, G. Nakamura, T. Chin, and T. Tsuji, “An artificial
emg generation model based on signal-dependent noise and related
application to motion classification,” PLOS ONE, vol. 12, p. e0180112,
06 2017.

D. P. Botelho, K. Curran, and M. M. Lowery, “Anatomically accurate
model of emg during index finger flexion and abduction derived from
diffusion tensor imaging,” PLoS computational biology, vol. 15, p.
€01007267, 08 2018.

A. Guerrero and J. Macias-Diaz, “A package for the computational anal-
ysis of complex biophysical signals,” International Journal of Modern
Physics C, vol. 30, p. 1950005, 01 2019.

M. M. Lowery, EMG Modeling and Simulation. John Wiley
& Sons, Ltd, 2016, ch. 8, pp. 210-246. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119082934.ch08

M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager,
S. Elsig, G. Giatsidis, F. Bassetto, and H. Miiller, “Electromyography
data for non-invasive naturally-controlled robotic hand prostheses,”
Scientific data, vol. 1, p. 140053, 2014. [Online]. Available:
https://europepmec.org/articles/PMC4421935

M. Atzori, M. Cognolato, and H. Miiller, “Deep learning with
convolutional neural networks applied to electromyography data: A
resource for the classification of movements for prosthetic hands,”
Frontiers in Neurorobotics, vol. 10, p. 9, 2016. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnbot.2016.00009

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 11 1997. [Online].
Available: https://doi.org/10.1162/neco0.1997.9.8.1735

M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681,
1997.

T. Chen and C. Guestrin, “XGBoost,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, aug 2016. [Online]. Available: https:
//doi.org/10.1145%2F2939672.2939785

S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation
of generic convolutional and recurrent networks for sequence
modeling,” CoRR, vol. abs/1803.01271, 2018. [Online]. Available:
http://arxiv.org/abs/1803.01271

A. Le Guennec, S. Malinowski, and R. Tavenard, “Data Augmentation
for Time Series Classification using Convolutional Neural Networks,”
in ECML/PKDD Workshop on Advanced Analytics and Learning on
Temporal Data, Riva Del Garda, Italy, Sep. 2016. [Online]. Available:
https://halshs.archives-ouvertes.fr/halshs-01357973

H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 26, no. 1, pp. 43-49, 1978.

T. Salimans, 1. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, X. Chen, and X. Chen, “Improved techniques for
training gans,” in Advances in Neural Information Processing
Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, Eds.,, vol. 29. Curran Associates, Inc.,
2016. [Online]. Available: https://proceedings.neurips.cc/paper/2016/
file/8a3363abe792db2d8761d6403605aeb7- Paper.pdf

S. J. Russell and P. Norvig, Artificial Intelligence: a modern approach,
4th ed. Pearson, 2020.

J. Long, E. Shelhamer, and T. Darrell,
networks for semantic segmentation,” 2014.
https://arxiv.org/abs/1411.4038

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385
I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” 2016. [Online]. Available: https://arxiv.org/abs/1608.
03983

“Fully convolutional
[Online]. Available:

[44]

[45]

[46]

[47]

(48]

[49]

[50]

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” 2017. [Online]. Available: https:
/larxiv.org/abs/1706.02515

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” 2015.
[Online]. Available: https://arxiv.org/abs/1502.01852

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of
data by simplified least squares procedures.” Analytical Chemistry,
vol. 36, no. 8, pp. 1627-1639, 1964. [Online]. Available: https:
//doi.org/10.1021/ac60214a047

R. Zhang, X. Zhang, D. He, R. Wang, and Y. Guo, “semg signals
characterization and identification of hand movements by machine
learning considering sex differences,” Applied Sciences, vol. 12, no. 6,
2022. [Online]. Available: https://www.mdpi.com/2076-3417/12/6/2962
F. Meduri, M. Beretta-Piccoli, L. Calanni, V. Segreto, G. Giovanetti,
M. Barbero, C. Cescon, and G. D’Antona, “Inter-gender semg
evaluation of central and peripheral fatigue in biceps brachii of young
healthy subjects,” PLOS ONE, vol. 11, no. 12, pp. 1-14, 12 2016.
[Online]. Available: https://doi.org/10.1371/journal.pone.0168443

J. Bouffard, R. Martinez, A. Plamondon, J. N. Co6té, and M. Begon,
“Sex differences in glenohumeral muscle activation and coactivation
during a box lifting task,” Ergonomics, vol. 62, no. 10, pp.
1327-1338, 2019, pMID: 31282824. [Online]. Available: https:
/ldoi.org/10.1080/00140139.2019.1640396

R. Martinez, J. Bouffard, B. Michaud, A. Plamondon, J. N. C6té, and
M. Begon, “Sex differences in upper limb 3D joint contributions during
a lifting task,” Ergonomics, vol. 62, no. 5, pp. 682—-693, May 2019.

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0193
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119082934.ch08
https://europepmc.org/articles/PMC4421935
https://www.frontiersin.org/article/10.3389/fnbot.2016.00009
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145%2F2939672.2939785
https://doi.org/10.1145%2F2939672.2939785
http://arxiv.org/abs/1803.01271
https://halshs.archives-ouvertes.fr/halshs-01357973
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1502.01852
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://www.mdpi.com/2076-3417/12/6/2962
https://doi.org/10.1371/journal.pone.0168443
https://doi.org/10.1080/00140139.2019.1640396
https://doi.org/10.1080/00140139.2019.1640396

	Introduction
	Augmentation Methods
	General Augmentation Algorithm Description
	Gaussian Noise
	Window Slicing
	SPAWNER
	EMG-GAN
	Random Combinations

	Evaluation
	Models
	Gradient Boosting
	Long Short-Term Memory
	Temporal Convolutional Network

	Data Description
	Setup
	Results and Discussion
	Model Performance
	Augmentation Method Performance
	Impact of Sex

	Conclusion
	References

