CSCI 1515: Vote Extension

Ayman Benjelloun Touimi
ayman_benjelloun_touimi@brown.edu
Brown University
Providence, Rhode Island, USA

1 INTRODUCTION

Online voting is extremely convenient. It makes the process sig-
nificantly more accessible to voters, ultimately improving partic-
ipation and thus, representation. A major challenge with online
voting resides in its security: it is difficult to ensure the validity and
confidentiality of every party’s vote.

Implementing the Vote project this year has taught us how to com-
bine different cryptographic protocols to put together a valid, cryp-
tographically secure, and anonymous voting protocol based on the
widely used Helios [1] protocol. However, the project only allows
voting for one of two candidates.

We describe in this final report our extension to the Vote project
to support voting for multiple candidates. Specifically, our new
extended protocol enables voters to vote for exactly k candidates,
and incorporates cryptographic mechanisms to enforce the rule.

2 BACKGROUND KNOWLEDGE

Our project is built off of a working solution for CSCI1515’s Vote
Project [2], as offered in the Spring 2024 iteration of the course. In
this section, we will explore fundamental cryptographic protocols
we applied in this project. We will not provide extensive details on
each of these protocols; the linked specification explains these in
more depth.

2.1 Additively Homomorphic Encryption

Usually, the ability to change the value of encrypted data is un-
desirable. This property, malleability, can be useful, though, as
computations can be performed over data without the requirement
of input from other parties or knowledge of the decrypted val-
ues. When a scheme allows for computation over ciphertexts, it
is a homomorphic encryption scheme; when it allows addition
specifically, it is additively homomorphic.

In this project, we utilize an additively homomorphic scheme
based on ElGamal encryption, which gives us the ability to combine
two ciphertexts and obtain a ciphertext that decrypts to their sum.
Although the decryption in this scheme requires solving the discrete
logarithm problem, there is only a small range of possible values
for our application ([0, n] where n is the number of voters), so it
suffices to check all of them by brute force.

2.2 Threshold Encryption

Now that we have homomorphic encryption, we have a secure
way for voters to add votes to publicly available values. However,
anyone with access to the decryption key is able to check the value
at any time, which nullifies the security benefits—they can simply
check whenever a vote is added.

To solve this, we extend ElGamal encryption so that each party
can only partially decrypt the ciphertext, and a full decryption
requires partial decryptions from each party.

Patrick Peng
patrick_peng@brown.edu
Brown University
Providence, Rhode Island, USA

2.3 Zero-Knowledge Proofs (ZKPs)

There are also many conditions we must uphold in this voting
scheme. We must ensure that voters are actually submitting a value
in [0, 1] for their vote, that partial decryptions are correct, that the
vote sum is the right amount, and so on. This is accomplished with
zero-knowledge proofs, which reveal some condition about the un-
derlying information without revealing the underlying information.
We extend these to be non-interactive with hashes of the transcript,
so that they do not require a challenge from an independent oracle.

2.4 Blind Signatures

In the voting scheme, we’d like the voters to be anonymous. How,
then, can we ensure that each voter only votes once? Someone
along the way must know the identity of the voter, but only enough
to prevent them from voting again, so there must be no way for
this party to know the vote of the voter. To accomplish this, we can
use blind signatures. Under this scheme, the voter can first blind
their message, making it look random; we can then have a party
sign this such that it beceomes a valid signature on the original
message after being unblinded.
In this project, we adapt RSA to achieve this.

2.5 Different Parties in Vote

In the Vote project, we have a few independent parties that conduct
the election together.

2.5.1 Voters. Voters begin by sending their blinded votes with
their ID to the registrar for signing. Then, they unblind the votes
and send them, along with the registrar’s signature and vote/vote-
sum ZKP(s), to the tallyer. At the end, the voter can collect partial
decryptions and check the results of the vote.

2.5.2 Registrar. The registrar is responsible for performing the
blind signature on the voter’s blinded message. Here, they can
check if the voter’s ID has been recorded in the database already.

2.5.3 Tallyer. The tallyer receives votes from the voter after the
registrar has signed them. The tallyer verifies the registrar’s signa-
ture, as well as each individual vote ZKP and the ZKP for the sum
of the votes. These votes are then stored into the database.

2.5.4 Arbiters. Arbiters are responsible for generating the result
of the election. Each arbiter holds a different partial key, which
generates a partial decryption of the ciphertext; threshold encryp-
tion only allows the result to be seen when all the arbiters have
provided their partial decryptions. Each arbiter will first verify the
signatures and ZKPs for the votes before generating their partial
decryption.

3 VOTING FOR EXACTLY k CANDIDATES
3.1 Premise

We propose that each voter i casts a vote of either 0 or 1 for each
candidate j out of n candidates. 1 means they’d like to vote for
the candidate, 0 means they do not. At the end, each voter will
have n ciphertexts corresponding to the encryption of their vote
for each candidate. Along with each ciphertext, the voter provides
a ZKP that the ciphertext is an encryption of either 0 or 1, using
the protocol used in the basic version of the assignment.

3.2 ZKP Proving that the Sum of Votes is k

In order to enforce that each voter votes for exactly k candidates,
we leverage the power of ZKP to prove, in zero-knowledge, that
the sum of a voter’s ciphertexts is k.

3.2.1 ZKP Generation and Verification. The protocol is as follows.

(1) The voter, who is also the prover here, obtains a homo-
morphic sum of their votes with the protocol described in
section 2.1. ¢ = (¢, ¢2). Specifically, ¢; = gziv " = ¢g" and
¢y = pk&i7i . gXi % = pk” . g5 Here, we should have s = k.

(2) The prover samples a random r’ from Zg, and computes
a pair (A, B) with A = ¢" and B = pk’’. They compute a
challenge o = H(pk, c1, ¢2, A, B). They then compute r”’ =
r’ + o - r. They send/make available to the verifier A, B, c1, ¢z
and r’”’.

(3) The verifier derives o = H(pk, c1, c2, A, B). They then verify

" ' o
that g" =A»c‘17andpk’ :B.(;_i))

3.2.2 Explanation of Correctness. This ZKP is essentially the same
as the ZKP for proving correctness from the Vote handout [2].
However, we have modified the r used for c1, ¢3 to be the sum of all
the r; of the individual votes instead of a randomly sampled number,
as this allows for the verifier to independently verify the ciphertext
provided is the sum of the votes by multiplying the individual vote
ciphertexts together. This quantity is still effectively random, and
gives the verifier no extra information, while working with our
scheme.

3.2.3 Implementing the Sum ZKP in Practice. We created a new
message, VoteSumZKP_Struct, to hold the values of A, B, ¢1, ¢z and
r.VoterClient was modified to hold, as a field, such a struct and a
two new functions, SaveVoteSumZKP and LoadVoteSumZKP to save
and load the ZKP into a file. VoteRow was also changed to include
a VoteSumZKP. We also adjusted the tallyer code to include, by con-
catenating it, the VoteSumZKP as part of the message it signs. This
way, we ensure the integrity of the VoteSumZKP on the database
and in individual files.

3.3 Design Decisions

3.3.1 Changes to the Common Configuration. We modified the
common configuration file, common_config. json, to include two
new parameters, num_candidates and num_votes .They respec-
tively define the total number of candidates taking part in the elec-
tion, and k, the number of votes per candidate. We have changed all
classes using CommonConfig accordingly, to store this information
as fields.

Ayman Benjelloun Touimi and Patrick Peng

3.3.2 Changes to Messages. We modified five messages (register
message from voter to registrar, blind signature message from regis-
trar to voter, vote message from voter to tallyer, VoteRow, and
PartialDecryptionRow) to include a new CryptoPP::Integer
field, corresponding to the candidate for which a given vote was
casted. This information is crucial later to reorganize votes in order
to combine them, but also to ensure votes are tallied properly in
case they are not sent exactly in order.

3.3.3 Changes to VoterClient. We first modified the behavior of
the Voter CLI to take exactly k votes. This way, we can specify k in-
tegers from 0 to num_candidates — 1 when registering with the reg-
istrar. We adjusted the vote, vote_zkp, registrar_signatures,
and blind fields accordingly to hold arrays. To save vote infor-
mation, we’ve also extended the Save helpers to take arrays as
input, and store each element individually in a directory it creates
in the input path. We’ve also updated the Load macros accord-
ingly. Remaining functions which involve communication with
other parties in the project were modified to account for multi-
ple votes by sending and receiving a separate message for each
vote. Finally DoVerify was adjusted to handle multiple votes itera-
tively and properly set up vectors as inputs to CombineVotes and
CombineResults.

3.3.4 Changes to ElectionClient. We extended methods related to
generating votes and verifying them to be able to handle multiple
votes, mostly by having them take and return vectors of the initial
inputs and outputs. More specifically:

e GenerateVote now takes a vector of k votes, from 0 to

num_candidates-1, and generates a vector of num_candidates

ciphertexts of either 0 or 1, based on whether the candidate

number was present in the input vector. A second vector

is returned with num_candidates ZKPs, each proving that
their corresponding ciphertext is an encryption of either

0 or 1. Along with this, a third argument is returned - a

VoteSumZKP_Struct - proving that the sum of all cipher-

texts is k, as described in section 3.2.

VerifyVoteZKP now takes a vector of ciphertexts, ZKPs, and

a VoteSumZKP_Struct. By iterating through each ciphertext

and ZKP, we are able to verify each ZKP individually as was

done in the base version of the project. To verify the ZKP
for the sum, we recompute the homomorphic sum using all
ciphertexts, verify that it is consistent with the data in the
sum ZKP, and use that as outlined in 3.2 to verify the proof.

CombineVotes is modified to receive a v X n vector, with o

the number of voters and n the number of candidates, and

vec[1][]j] corresponding to voter i’s vote for candidate j.

As an output, the method returns a length n vector, with

each element j corresponding to the summed ciphertext for

candidate j.

e CombineResults is modified to take in two vectors: a vector
of Vote_Ciphertext, corresponding to the combined votes,
and a 2D, n X v vector of partial decryptions, where vec[i]
is the list of partial decryptions to decrypt the combined vote
for candidate i.

3.3.5 Changes to ArbiterClient, RegistrarClient, TallyerClient. These
classes have not undergone any significant change in logic, apart

CSCI 1515: Vote Extension

from iterating through vectors and receiving or sending multiple
messages (one per vote). The most notable change is the concatena-
tion of the candidate number for the signature in TallyerClient,
explained in more detail in section 3.2.2.

4 CHALLENGES

4.1 Design Challenges

4.1.1 Sending Multiple Messages. We were initially thinking of
modifying data structures involving vote data to include vectors of
votes. This way, we would avoid adding the candidate_num field
and would track information based on the position of the vote in the
array. We decided to go with the latter option, however, due to the
increased difficulty of adjusting our serialization to fit vectors in the
database and in files. Additionally, this design choice makes it easy
to re-send individual votes, in case of a network communication
error.

4.1.2 Keeping Track of Votes for Verification. A major challenge
we encountered was to organize vote data properly to prepare
inputs for VerifyVoteZKP. The function must take a 2D Vector of
VoteRow, where each row corresponds to all votes from a single
voter. However, our VoteRow structure does not include a field
identifying the voter ID. We leveraged instead the uniqueness of the
randomness r of each VoteSumZKP structure to solve this problem.
Because the randomness r corresponds to the sum of each individual
randomness r; for a given voter, and given the very large range
of values r; can take, r would be extremely likely to be a unique
identifier for voters. We’ve gathered votes into individual lists per
candidate by using a std: :map mapping from an r value to a list
of VoteRows.

4.2 Implementation Challenges

4.2.1 Dealing with 2D Vectors. We ran into challenging bugs (seg-
mentation faults) related to incorrect initialization of two-dimensional
std: :vectors. These bugs were addressed through proper use of
the reserve and resize methods, allowing memory reservation
and determination of a vector’s size before elements are added to it.

4.2.2 Modifying Database Tables. With the addition of multiple
votes for each voter, we had to edit the tables to have multiple
primary keys, and modify the queries and insertions made. To assist
with this, we looked up SQL tutorials and used a program called
DB Browser for SQLite [3] to view the contents of the database.

5 EXPERIMENTS
5.1 Process

To conduct experiments, we followed the process outlined below:

(1) cdinto the build file, and run “cmake ..". Then, run make
to compile the binaries. Finally, in the root directory, run
mkdir disk.

(2) Modify config/common_config. json to include the num-
ber of candidates (num_candidates) and maximum number
of votes (num_votes) we want to experiment with.

(3) Run the vote_registrar binary on port 5000, with config/
registrar_config. jsonand config/common_config. json.

(4) Run the vote_tallyer binary on port 6000, with config/
tallyer_config.json and config/common_config. json.

(5) Runthevote_arbiter binary with config/arbiter@_config.

json and config/common_config. json. Inside the CLI, run
the command keygen. This will exit with an error.

(6) Runthevote_arbiter binary with config/arbiteri_config.

json and config/common_config. json. Inside the CLI, run
keygen.

(7) Exit the vote_registrar and vote_tallyer REPLs using
exit, and repeat steps 3 and 4.

(8) Run the vote_voter binary with config/voter@_config.
json and config/common_config. json.

(9) In the voter CLI, register with the registrar using register
localhost 5000 <your votes>. The placeholder <your
votes> should correspond to a space-separated string of can-
didate numbers, from 0 to num_candidates-1, for which
you wish to vote. Then, send your vote to the tallyer using
vote localhost 6000.

(10) Repeat step 9 with as many voters as you want.Make sure
to use a different configuration file every time.

(11) Once voting is done, run the vote_arbiter binary with two
different config files, as described in steps 5 and 6 (without
running keygen). Then, for each arbiter, run the command
adjudicate, which should combine votes and results, and
publish them to the database.

(12) Finally, using the vote_voter binary with any configuration,
run the verify command to verify the election. The total
number of votes for each candidate should be printed in the
console.

5.2 Valid Scenarios

5.2.1 Three voters, two candidates, one vote. As a sanity check, we
ran this scenario to ensure the basic functionality was still there
after making our changes. This (kind of) recreates the original
scenario from the Vote project.

5.2.2 Three voters, ten candidates, five votes. This was a larger test
of our changes. We tested this to make sure multiple votes for
candidates could be counted, to ensure the votes were going to the
correct candidates, and to make sure all the ZKPs and other data
were being generated, stored, and verified properly.

5.2.3 Invalid Scenarios. Our project has checks at multiple points
to ensure that invalid set of votes, for instance multiple votes for
the same candidate, are rejected.

6 FUTURE WORK

A further extension could be to add the capability to require voting
for at most k candidates, which requires a more complicated ZKP.
Specifically, this involves implementing a ZKP to prove that a given
ciphertext is either an encryption of 0, 1, 2, .. . up to k. If we were to
implement this, we would do so in addition to our current protocol
for exactly k candidates, and we would include a parameter/option
to choose between both for a given election.

We could also focus more on robustness in real world use cases;
this would likely involve more responsiveness and adaptability
to malicious actors/erroneously submitted votes. For example, we

might want to have an option for users to resubmit different votes
before the election has finished, or clear their data from the data-
base.

7 RESOURCES USED

We used CryptoPP and other libraries involved in the implemen-
tation of the drivers and other files from the Vote project. We also
used DB Browser for SQLite[3] to view the database.

Ayman Benjelloun Touimi and Patrick Peng

ACKNOWLEDGMENTS

A huge thank you to Professor Miao and the TAs for the course; the
projects presented interesting concepts well and the final project
especially was a very satisfying challenge.

REFERENCES

[1] David Bernhard and Bogdan Warinschi. 2016. Cryptographic Voting - A Gentle
Introduction. International Association for Cryptologic Research (2016).

[2] CSCI1515 - Vote Spring 2024. https://cs.brown.edu/courses/cscil515/spring-
2024/static/latex/projects/vote.pdf

[3] DB Browser for SQLite Accessed May 2024. https://sqlitebrowser.org/

https://cs.brown.edu/courses/csci1515/spring-2024/static/latex/projects/vote.pdf
https://cs.brown.edu/courses/csci1515/spring-2024/static/latex/projects/vote.pdf
https://sqlitebrowser.org/

	1 Introduction
	2 Background Knowledge
	2.1 Additively Homomorphic Encryption
	2.2 Threshold Encryption
	2.3 Zero-Knowledge Proofs (ZKPs)
	2.4 Blind Signatures
	2.5 Different Parties in Vote

	3 Voting for Exactly k Candidates
	3.1 Premise
	3.2 ZKP Proving that the Sum of Votes is k
	3.3 Design Decisions

	4 Challenges
	4.1 Design Challenges
	4.2 Implementation Challenges

	5 Experiments
	5.1 Process
	5.2 Valid Scenarios

	6 Future Work
	7 Resources Used
	Acknowledgments
	References

