
CS1680 Final Project

Brandon Gong, Patrick Peng - “Generals”

1 Introduction

In this project, we set out to make a clone of the online multiplayer game generals.io. In particular,
we wanted to learn how to work with WebSockets – both on the client and server side – to create
interactive experiences where multiple people can interact. We successfully built a working mimic
of the game by building a backend websocket server, a frontend, and a custom message protocol
for communication between server and clients.

2 Design/Implementation

The project may be broadly broken down into 3 parts:

• The backend (C++), a server which all players connect to, which manages queueing players
for games as well as running the games (taking player moves and computing the new board
state),

• The message protocol, which specifies how the backend and frontend communicate – how
moves and boards are encoded, how the user sends their name / receives other player
names, how the user finds out if they won/lost, etc., and

• The frontend (TypeScript/React), which collects user input and relays it to the server and
renders the board during the game.

2.1 Backend

The central abstraction for representing a game is the Board class (board.h/.cpp), which manages
storing the board, computing the new board per tick, and communicates with clients.

A board is a 2-dimensional grid of cells with a coordinate system defined with the origin at
the top-left and growing downward and to the right. That is, the cell at the very top-left has
coordinates (0,0), the cell to its right has coordinates (1,0), and the cell below it has coordinates
(0,1), and so on.

A move – which is always simply a transfer of troops from one cell to another vertically or
horizontally adjacent cell – can thus simply be represented as a pair of points under this coordinate
system, i.e. ((xsrc, ysrc), (xdst, ydst)).

Cells (cell.h/.cpp) represent the basic building blocks of the game, and can be in a variety of
different states:

1

https://generals.io/


State ID Name Description
0 MOUNTAIN Impassable terrain features, cannot be captured by anyone.
1 VACANT Empty cell not occupied by anyone. Does not generate troops.

2 OWNED
A cell that is occupied by a player. Generates 1 troop per 50
ticks.

3 GENERAL
Players lose if their general is captured. Generates 1 troop per
2 ticks.

4 UNCAPTURED CITY
A city costs between 40-50 soldiers to capture. It does not
generate troops while uncaptured.

5 CAPTURED CITY Once captured, cities generate 1 troop per 2 ticks for the owner.

Because per-state tick behavior for cells depends on the state the cell is currently in, the Cell

class provides a Cell::tick method to decouple this logic from the Board. However, the Board

manages transitions in the Cell state machine according to player moves as the game progresses.
A Board may be flexibly initialized using a board config struct, which specifies the dimensions

of the board and the locations of the generals. Based on this, locations of mountains and cities are
randomly generated.

The Board waits to begin the game until enough players have joined, assigning each waiting
player an ID. Once all players have joined, a thread is spawned which manages updating the board
per tick and sending out this updated board to players. Meanwhile, the main thread continues to
receive messages from players, responding appropriately by e.g. enqueuing moves.

Each player has their own queue of moves, and since there are two threads that operate on each
queue (the main thread enqueues moves, and may occasionally clear the queue, while the board
thread pops available moves), we define a class called SafeQueue which protects these operations
with a mutex.

We handle multiple lobbies by checking after each new connection if a Board is full, and if so,
instantiating a new Board to handle future connections. Since each instance has its own thread for
running the games, they may all run in parallel without conflict.

2.2 Message protocol

Messaging between the backend and the frontend is achieved with WebSockets. Because our goal
was not to implement the WebSocket protocol (which is extremely complicated), but rather to
learn how to use it in the context of building applications, we elected to use a third-party library
µWebSockets instead on the backend. On the frontend, we use the standard WebSockets API
without any additional libraries.

Cells are encoded in one 16-bit short (in network byte order): the 3 highest order bits record
the cell state (see the table in Section 2.1), the next 3 hold the current owner of the cell, and the
remaining 10 bits hold the number of troops in that cell. Note that the owner field is only relevant
if cell state is OWNED, GENERAL, or CAPTURED CITY, and the last field is only relevant in those cell
states plust UNCAPTURED CITY. In other states, these fields are irrelevant and only there for the sake
of consistency and ease of decoding.

A board is simply one byte for number of rows, followed by one byte for number of columns,
followed by its encoded cells, in the order of all cells in first row from left to right, followed by all
cells in the second row, etc.

2

https://datatracker.ietf.org/doc/html/rfc6455
https://github.com/uNetworking/uWebSockets
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API


With this encoding in hand, we can define our message formats from server to client and vice
versa. All messages start with a 1-byte tag which determines the message type.

2.2.1 Server-to-client messages

• Game start:

Length (bytes) Name Notes
1 Tag Value always 0.
1 Player ID The ID of the player this message is sent to.
1 Num players The number of players, n.

32n Player names Player names, stored in 32-byte blocks, null-terminated.
2 + wh Encoded board Where w and h are dimensions of the board.

• Game end; you lost: just a single byte of value 1.

• Game end; you won: just a single byte of value 2.

• Player connected (used to update number in waiting room):

Length (bytes) Name Notes
1 Tag Value always 3.
1 Total players The total number of players now connected.

• Player disconnected:

Length (bytes) Name Notes
1 Tag Value always 4.
1 Player ID The ID of the player that was disconnected.

• Per-tick update:

Length (bytes) Name Notes
1 Tag Value always 5.

2 + wh Encoded board Where w and h are dimensions of the board.

• Name update (sometimes a player name may come in after game starts):

Length (bytes) Name Notes
1 Tag Value always 6.
1 Player ID The ID of the player whose name to update.
32 Name Their new name.

3



2.2.2 Client-to-server messages

• Enqueue move:

Length (bytes) Name Notes
1 Tag Value always 0.
1 Initial x
1 Initial y
1 Final x
1 Final y

• Clear move queue: just a single byte of value 1.

• Send name:

Length (bytes) Name Notes
1 Tag Value always 2.
32 Name The new name.

The chief pieces of code used for communication are the Board::unicast and Board::broadcast

methods on the backend and useGameServer.ts on the frontend. Parsing of messages in the back-
end occurs in Board::process message.

2.3 Frontend

The frontend is implemented with React. A custom hook is implemented to delay initialization
of the WebSocket until after the user has input their name, and to avoid spurious reinitializations
of the socket on state changes. The frontend also handles cosmetic details such as fog and the
leaderboard.

The frontend does no work in terms of game logic, besides prohibiting users from moving
outside the bounds. The backend does all of the validation work (ensuring users don’t capture
mountains, or move squares that they do not own), discarding invalid moves.

3 Discussion/Results

We were able to successfully create a playable clone of Generals. Our version supports up to 7 con-
current players per game and multiple concurrent games. Below are screen captures comparing
our implementation (Figure 1) to the actual site (Figure 2). For a live demonstration of the game
running, refer to the demo video uploaded to the repository here.

Over the course of building the project, we encountered several challenges that were quite
difficult to overcome.

One bug we faced in the backend was due to how µWebSockets is implemented as a single-
threaded library. To send messages from sockets from a thread other than the thread that created
the socket (in our case, we needed to send messages out from sockets that were accepted by the
main thread), we must use the Loop::defer, which waits until the socket in the main thread is
ready to send our message. This lead to tricky situations associated with deferring messages for

4

https://github.com/brown-cs1680-f23/final-generals/raw/main/demo_video.mp4


Figure 1: Our implementation. Note for practical purposes, we made our main testing board a
smaller board for two players, but our implementation supports more players and a configurable
board size.

sending right before the socket is closed, and we found that game end messages we sent right
before closing the socket were lost. Given more time, we may have been able to get around this by
having the deferred function set a boolean flag once sending has completed. For now, we simply
delay closing the socket.

In the frontend, a particularly difficult bug we faced arose from linking state-updating func-
tions as callbacks triggered when certain messages are received through the WebSocket; in par-
ticular, we used to send a game start message from the backend and without delay send a game
update message from the backend. This resulted in two callbacks on the frontend triggering very
shortly one after the other, both with state updates; the second callback would be called so soon
that the state update had not fully taken place yet, so when the second callback executed its state
change, it overwrote its cached old values into the state. This was resolved by adding a natural
one tick delay before sending the first game update, but still begs the question on how to handle
rapid messages while avoiding such race conditions.

4 Conclusions/Future work

In working on this project, we learned how to build clients and servers that use WebSockets to
communicate, and how WebSockets are very natural extensions of the TCP sockets we imple-
mented in this course. We are very happy with how the project turned out, as it is completely
usable in its current state, being the first live interactive web app either of us have made.

If we could continue working on this project, there are many different directions we could
pursue. The first would be to add new message formats that enable e.g. chats between users or
splitting troops for more complex strategies. We would also move fog of war computations into
the backend, since in the frontend the data is easily exploitable by users who wish to cheat. Finally,
a major iteration would be to explore replacing per-game ticks with UDP (WebRTC) instead of TCP
(WebSocket), and see how that affects user experience particularly over unstable connections.

5



Figure 2: The reference implementation.

6


	Introduction
	Design/Implementation
	Backend
	Message protocol
	Server-to-client messages
	Client-to-server messages

	Frontend

	Discussion/Results
	Conclusions/Future work

