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1 Introduction

TAC AdX is a simulated ad exchange where users of various demographics are auctioned via sec-
ond price auctions to companies that are attempting to generate profit and prove to be a reputable
advertiser. To earn revenue, the companies are assigned campaigns that pay according to the
amount of impressions received in a particular market segment. Our task was to develop an agent
to play as one of 10 companies participating in the simulated ad exchange, hoping to generate the
most profit over 10 days of advertisements.

2 Theoretical Analysis

During the development of theoretical analyses, we performed research online about the game to
get an idea of what the key points in this game were. Some primary references are included in the
references section.

The original TAC AdX game is too complex to be analytically solved in a short time frame. We
make various simplifications to the game to construct a theoretical analysis of optimal strategies.

We first consider strategies for bidding on the incoming users, starting with the simplest model
and progressively adding elements of the game until we feel that the game is sufficiently complex
that it is not analytically tractable.

At the base level, for each user a second price auction is run. Of course, for second price auc-
tions, bidding truthfully is the dominant strategy. If we consider k repeated second price auctions,
but still maintain that bids can only be submitted once (before all the auctions are ran), the game
is clearly exactly the same as a one off auction, so bidding truthfully is still the dominant strategy.

2.1 Dominant Budgeting

Now, suppose we add in the element of budgeting to the repeated k second price auction model.
Formally, before the auctions are run, each bidder receives a budget Bi as part of their type, mean-
ing the bidder will only receive utility if their spending is below Bi. Any goods won by spending
more than Bi are valued at 0 i.e. the utility is negative of the amount paid for the good.

When the auctions are run, in addition to submitting a bid b̂i, each bidder i also submits a
budget B̂i where the bidder can only spend up to B̂i. Once the bidder has spent at least B̂i after
winning some ki goods, they are removed from the auction. The auction continues to run on the
remaining k − ki goods and bidders [n] \ {i}.

Lemma 2.1. Submitting B̂i = Bi is a dominant strategy up to b̂i.

Proof. Consider alternative strategies. Notice that if the agent is not “in the money” (b̂i is not high
enough to win any goods), the submitted budget is irrelevant - the agent gets 0 utility regardless.

Strategy 1: submit B̂i < Bi. In this case, the bidder is unnecessarily limiting their utility. There
are two cases with what happens.

1. Submitting B̂i = Bi would not change the amount of items won. Then, the utility is the same.

2. Submitting B̂i = Bi would cause i to win more goods. Assuming each good brings them
positive utility (namely if b̂j ≤ vi, where j is the second highest bidder), which is always true
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when ρ linear, clearly being truthful is better. This assumption is usually applicable if the
agent is playing rationally.

Strategy 2: submit B̂i > Bi. Notice, the bidder now unnecessarily exposes themselves to nega-
tive utility. There are two cases that can happen here.

1. Submitting B̂i > Bi causes no change compared to submitting B̂i = Bi in the number of
goods that the agent wins. Then, the utility is the same.

2. However, if submitting B̂i > Bi causes the agent to win ∆ki extra goods compared to submit-
ting B̂i = Bi, the agent has lowered their utility by ∆ki b̂j unnecessarily, where b̂j ≥ 0 is the
bid of the second highest bidder.

So, it is always dominant up to b̂i to submit B̂i = Bi. The b̂i part is because there could be a case
where you make an extra bid before you hit your budget which puts you over the budget, making
the good have 0 utility.

However, there does not exist dominant behavior for b̂i. Note that in some occasions, depend-
ing on the actions of the other bidders, bidding untruthfully may yield more utility. In other
words, there is no dominant strategy as the best response depends on the actions of the other
agents. Consider the following example.

Example: Suppose we have three bidders in the repeated second price auction, and there are
k = 10 identical goods that will be sequentially auctioned off. Bidder 1 (us) has a valuation of 1
and a budget of 10, bidder 2 has a valuation of 0.99 and a small budget of 1, and bidder 3 has a poor
valuation of 0.51 and likewise a budget of 1. Assume the other two bid truthfully and consider
our response to this scenario. In this case, a better response is to shave our valuation to 0.99, and
claim as many goods as the randomness gets us, for an expected utility of around 3.96, whereas
bidding truthfully would have a net utility of 0.08 as bidder 2 would always end up as the second
price. This strategy only works because bidders are forced to drop out early by lack of budget.

However, if bidder 2 decides to underbid, say at 0.98, our best response is no longer to bid 0.99;
instead we’d also want to bid 0.98.

Thus, it is clear that there is no dominant way to choose b̂i. We remedy this in our agent by
attempting to use other factors to decide what b̂i should be, such as quality score and additional
assumptions.

So far, we have assumed that profit linearly scales with the number of goods won. In TAC
AdX, that is not the case. We now analyze the optimal strategy for the TAC AdX profit scheme,
which involves additional moving parts.

2.2 Optimal Target Reach Fraction

TAC AdX relaxes the assumption that the profit scales linearly and introduces the idea of a reach.
TAC AdX scales profit according to a special effective reach function ρ : [0, 1] → R. Specifically,
we consider when

ρ(η) =
2
a
(arctan(aη − b)− arctan(−b))

for selected constants a, b ∈ R. In the spec, these are set to be a = 4.08577 and b = 3.08577.
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Consider a campaign with budget B and reach R. Let η be the fraction of R that our agent
wins/satisfies. Then, the profit is defined to be

P(η, B, R) = Bρ(η)− K, (1)

where K is the total cost spent to get ηR impressions and ρ is the effective reach function. Clearly,
η = 1 is not necessarily profit maximizing, because ρ could grow slower than linear. In general,
P is not easy to maximize because K is unknown. However, suppose we can estimate a fixed
approximate cost-per-impression k ∈ R+. Then, the profit can be expressed as

P(η, B, R, k) = Bρ(η)− kηR. (2)

Since k is fixed, this is optimizable with respect to η. We want to solve

0 =
∂P
∂η

= B
∂ρ

∂η
− kR.

Letting ρ be defined as in the specification,

kR = B
2
a

a
1 + (aη − b)2 .

2B
kR

= 1 + (aη − b)2.

Taking the appropriate square root, this can be solved to give an optimal target reach percentage
of

η =
b +

√
2B
kR − 1

a
.

We need to be careful when implementing this η in practice, since for some campaigns 2B
kR − 1

may not be ≥ 0. However, in those cases, it essentially means the campaign has extremely high
estimated cost per impression and/or a very low B/R ratio - our agent attempts to avoid these
campaigns as we will see later on. So, in practice, it is sufficient to calculate the optimal η as

η =
b +

√
max{0, 2B

kR − 1}
a

=
3.08577 +

√
max{0, 2B

kR − 1}
4.08577

.

2.3 Impression Valuation

Due to the fact that each agent can get contracts with budget equal to the reach, we assume 1 to
be a ’true’ valuation for each impression. Here, we ignore the additional contracts available for
bidding because that makes this a lot more complex.

2.4 Campaign Auctions

For campaign auctions, we could not come up with any optimal strategy because there were too
many factors at play. However, through some testing in labs and separately, we realized that qual-
ity score was crucial, so the completion difficulty of the contracts should be emphasized. Contracts
with small reaches (δ = 0.3, 0.5) were easier to complete and thus would help quality score, so we
thought the optimal strategy would involve maintaining quality score via evaluating “good” con-
tracts.
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2.5 Optimal vs. Exploitative Play

In our agent, we experiment with various exploitative practices that are not necessarily rigorously
dominant strategies. We use an example to motivate this decision.

Example. Consider a market segment where all participating bidders have one campaign
where the budget is at most the reach i.e. Bj ≤ Rj for all j ∈ [n]. Then, the per-person valua-
tion is ≤ 1. Further, assume that bidder i’s campaign has a per-person valuation of exactly 1 i.e.
Bi = Ri.

In this case, a perfectly valid but notably not game theory optimal strategy is to exploitatively
overbid. By submitting a bid above 1 (their valuation), the bidder can guarantee first dibs on the
market segment instead of leaving it up to chance among the likely multiple other bidders who
submitted bids of 1. Since the auctions are second price, as long as there are no other overbidders,
the agent will still break even or make money.

For an agent that prioritizes quality score, for example, this is a valid strategy that deviates
from conventional play, as it exposes the agent to negative utility. However, the agent can play a
more profitable strategy on the following days, using its strong quality score as leverage to win
the campaigns it wants to win and dominate the game. Thus, depending on the goals of an agent,
unconventional exploitative strategies may work better than “in the box” strategies.

In particular, an agent can play in an unexploitable manner by always bidding true valuations,
never exposing itself to negative valuation. However, this will probably lead to a middle of the
pack finish on the leaderboard. Employing exploitative strategies is absolutely essential to winning
the competition.

3 Failed Ideas

Early on into the project, we struggled with figuring out a strategy without glaring issues. This
section discusses some strategies that we at one point implemented but did not make it into our
final agent (in their preliminary form) along with the insight we gained.

3.1 Tanking Quality Score

One strategy we investigated early on was if there was any exploits with the quality score compu-
tation. We hoped to develop a strategy where early on, the agent would develop a strong quality
score, and then after the game went on for a few days, buy out all of the campaigns on all following
days without a regard for whether or not they were feasible to complete so that the other agents
would not have a way to make significant profit (other than the randomly assigned auction).

However, with α = 0.5 as the moving average scaling parameter set by the game, the “histor-
ical” reputation of the agent was easily overridden by its performance on new days. Our agents
atrocious performance in these experiments where we intentionally destroyed quality score to
maximize profit motivated our first key principle described in subsection 4.1 that maintaining
quality score should be first priority, even above profit.

3.2 Overbidding

As mentioned in the discussion of optimal vs. exploitative play, overbidding is a viable strategy
targeted at exploiting the assumption that no one else will submit bids above 1 in order to establish
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a strong quality score.
We implemented this strategy early on, varying how much to overbid and only overbidding

for the early days, but the results were disappointing. We often ended up with −1000 or more
average utility, likely because tuning the daily limit was difficult. Through this, we realized that for
both performance and simplicity, overbidding should be used sparingly and only as a desperation
measure to complete a campaign. See subsection 4.3 for how we utilize overbidding.

3.3 Proportional Bidding

A strategy that we attempted and worked well during the labs was proportional bidding, or bidding
that was scaled based on the proportion of people in the underlying market segments.

For example, if a campaign’s segment was MALE YOUNG, we submitted different bids for the
underlying segments MALE YOUNG HIGH INCOME and MALE YOUNG LOW INCOME. Because one segment
(MALE YOUNG LOW INCOME) is a much larger segment than the other (MALE YOUNG HIGH INCOME), we
bid lower on it since, it appears, that there is more freedom to undercut.

We decided to eliminate this strategy of bidding because it resulted in a lot of relatively arbi-
trary parameters in our code - we found it difficult to rigorously understand what our agent was
bidding. Furthermore, we found empirically in both local runs and the live competition in class
that a simpler undercutting strategy could achieve essentially the same results.

Instead, we bid using a much simpler strategy, defaulting the majority of the time to undercut-
ting at a fixed percentage of the true per user valuation. See subsection 4.3.

4 Our Agent

4.1 Key Principles

Our agent operates on a few key principles.

1. Quality score is extremely important. As aforementioned, we noticed through experiments
and intuition early on that quality score was the most important descriptor of an agent - it
should even be prioritized over profit, which is why this became part of our theorized opti-
mal strategy and final agent. Recovering from low quality score is extremely difficult without
suffering huge profit losses, whereas maintaining a strong quality score via sometimes tank-
ing losses results in the agent having more freedom to do whatever it wants, dominating the
rest of the agents with lower quality score.

Low quality score also means that all sources of profit are essentially cut off: it becomes
increasingly unlikely that the agent gets a free campaign and it is also extremely unlikely
that the agent wins any contracts via auction.

The only way back into the game with low quality score is by winning a campaign via auc-
tion by bidding a very low budget (since the effective bid is large due to low quality score)
and then tanking a loss to complete the auction, potentially multiple times. With such a short
game (10 days), it is nearly impossible to get back into and win the game if this is the case.

2. Bidding on campaigns should depend on demand and profitability of the given cam-
paigns. Again, through tests, we noted that extra campaigns could be a significant detractor
or contributor to profits; the budgets varied widely among the contracts the TA bots were
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able to obtain. If we uphold the first principle and maintain a high quality score, we are also
able to obtain contracts with larger budgets, so we focused on maximizing this in our agent.

4.2 Bidding on Campaigns

When evaluating how to bid on the available campaigns, it is important that we evaluate the
profitability of each campaign. If the sector intersects with campaigns we already know to exist, it
is less likely we will be able to fulfill the contract well; similarly, if the reach is too high it is also
hard to fulfill it well. To maintain a high quality score, we assign more value to contracts which
are easier to complete. So, we generate a private valuation for each campaign based on its sector,
reach, and length.

There are two types of campaigns when viewed from the lens of our agent: known and un-
known. In particular, known campaigns are campaigns where our agent has full information: its
own auctions and the previously auctioned campaigns. On the other hand, unknown campaigns
are campaigns where we lack information because of randomness.

For this section, we assume that all campaigns being auctioned are sold to some agent who
aims to complete the campaign.

4.2.1 Known Campaigns

A campaign can be completely described by its market segment Si, its δi, and its length ℓi ∈
{ℓmin, ℓmin + 1, . . . , ℓmax}. With this knowledge, for any market segment, we can calculate a heuris-
tic measure of how “competitive” that segment is based on a sum over known campaigns that
contain this segment. Suppose that there are m known campaigns that include this day T, each
with parameters (Si, δi, ℓi). Then, the proportion of the segment that is covered by known auctions
on the current day T is defined to be

pK(S, T) =
m

∑
i=1

1S⊆Si

δi|S|
ℓi|Si|

. (3)

4.2.2 Accounting for the Randomly Assigned Campaigns

There are also unknown auctions or auctions that will randomly appear and be randomly assigned
as well. We can use expectations to approximate the contribution of the randomly assigned cam-
paigns to the market segment of interest. In other words, we want to compute a probabilistic
version of Equation 3, or

E[proportion of segment S covered by campaigns at time T]. (4)

We can calculate this expectation by multiplying the average number of active campaigns
owned by anyone with the average proportion of the current market segment covered by each
campaign, noting that they are independent quantities. Let’s begin with the simplest version of
the expectation: assume that the campaign of interest is only 1 day long i.e. how difficult it is is
determined purely by the contracts that will be running on the next day.

An important quantity at play is the quality score of the other agents, since it affects their
probability of receiving a random contract on day T. Since it is impossible to know the quality
scores of other agents, we specify a function Qavg : N+ → [0, 1], where Qavg(T) represents our
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guess at the approximate average clipped quality score on day T (i.e. EA\i[min(Q, 1)] taken over
the other agents playing the game). In practice, we empirically determine values for this function
by running ten equivalent bots that log their quality scores throughout the game, then averaging
them. In a situation with about equal opponents, we estimate this to be a good upper bound for
performance.

Then, recalling that per specification the random campaigns are at most one day long (so that
the only random campaigns that matter are the ones that come into existence on day T) and all
random quantities are chosen independently,

E[p(S, t)] = (|A| − 1)Qavg(t)E[δ]ESi [1S⊆Si ], (5)

where ESi means averaging over all potential choices of Si, the market segment of an individual
campaign.

For multiple-day-long campaigns, we additionally add in expectations for how many cam-
paigns will be on auction that day, and how that will influence how many campaigns are active at
a given time. For a given contract with market segment S on a given day j past the current day t,
where we know all the campaigns that are available and their lengths, we use the formula:

pU(S, t, j) = E[p(S, t, j)] = 5
min(j,t+2)

∑
x=t

min
(

1,
10 − x + 1

3

)
(3 − (t − x))

3
E[δ]ESi [1S⊆Si ] (6)

The first term scales if the day is the ninth or the tenth, representing less contracts available then;
the next represents the chance a contract from a previous day x actually makes it to day t (the
length is long enough), and the other terms come from the previous equation, with a multiple of 5
because there are 5 contracts up for auction per day (we assume all are won by some participating
agent).

To combine both known and unknown and develop a complete score for a market segment S
over [t, t + ℓ− 1], we simply average the sum of pU and pK as follows:

p(S, t, ℓ) =
ℓ−1

∑
j=0

pU(S, t, j) + pK(S, t + j)
ℓ

. (7)

4.2.3 Evaluation

Given these metrics, we have a general idea of which sectors will be more popular than others,
allowing us to develop a valuation for each campaign given the sectors it covers by calculating
how much of that segment we expect to be in demand. With this valuation calculated, we then
calculate the difficulty c of our contract with market segment S, length ℓ, and starting from day t
as

c(S) =
E[p(S, t, ℓ)]

3
√
ℓ

(8)

We add a fudging factor based on length of contract because we believe longer contracts are easier
to complete, as we have more flexibility in when to acquire users.
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4.2.4 Final Decision on Campaigns

To make our final decision on what to bid on a campaign, we consider another factor: if there is
a high demand for campaigns, we should gradually decrease our budget bids to look to win easy
contracts, as our quality score should be enough to still net some profit on easy contracts. Here,
we assume that with a high quality score we can still get a good budget, especially considering the
formula for given budget in a second-price auction. On the other hand, if demand is low, we can
win with higher budget bids, so we gradually increase the budget instead.

This makes our bid b for contracts we believe to be easy enough as so:

b(S) = (competitiveness factor)c(S), (9)

where the competitiveness factor is a tuned parameter that is adjusted every time we win or lose
a contract. The competitiveness factor is the inverse of the intuitive notion of “competitiveness”
because the auction is second-lowest price. In general, if we find ourselves losing a lot of contracts,
we make the competitiveness factor lower to be more aggressive, and if we are winning many
contracts, we make the competitiveness factor higher to chill out and not overload our agent with
too many contracts, as with every new contract we accept, we place ourselves in a position to lose
quality score.

Another point must be mentioned here, which is the situation that occurs when only one bidder
bids on a contract. In the class competition, we saw many agents with sky-high profits at the start
(Figure 1). We were quite confused about this until we saw an edge case rule describing that when
there is only one bidder on a contract, the budget for the contract is based on an average of the 3
lowest quality scores in the game.

We believed that these agents must be getting extremely high budgets on campaigns that no-
body else bids on, since our initial strategy was to not bid on campaigns we deemed particularly
unprofitable. To counter this, even if the contract is difficult to complete, we bid the maximum on
every auction so that nobody can exploit this rule to achieve an equilibrium of sorts. On the off
chance we win, we win with a large budget given our quality score, and we are usually able to
maintain our quality score while making some profit. This diverges from our preliminary strategy
because we bid on contracts even if they’re hard. However, we justify the decision by claiming
we are forced to bid on them to prevent other agents from achieving easy profits with extremely
high-budgeted contracts.

4.3 Bidding on Users

Bidding on users is a key portion of our agent, since we must attempt to remediate the lack of a
dominant strategy using ideas developed in our optimal theoretical strategy.

First, we define the clipped optimal target reach fraction as

η∗ = min{ηhigh, max{ηlow, η}} (10)

where η is calculated according to subsection 2.2. Intuitively, we need to clip η to a reasonable
range that would preserve quality score. We set ηlow = 0.9 and ηhigh = 1.3, following [1]. These
values ensure that we complete the campaign to a degree that results in a strong quality score.

The rough ideas of our bidding algorithm are outlined here:

1. First, set B̂ to a shaded and fixed percentage of B − K, where K is the cost so far.
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Figure 1: Results with abnormally high utility (our agent is “banger,” in yellow). We suspected it
was because there were campaigns won via an auction where only one bidder submitted a budget.
Between 2 and 3 AM on 5/3, we submitted a new agent with many revisions, including our new
strategy for bidding on auctions; after that no agent was able to derive such high profits.
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2. If this is the last day of the auction and the clipped optimal target reach fraction η∗ has not
yet been reached, aggressively up scale B̂.

3. If η∗ has been reached, set B̂ to something low, in case we get lucky and can make some easy
profits.

4. Report B̂/Rrem as the bid, where Rrem is the remaining reach in the campaign and B̂ as the
daily limit.

The fixed percentage we used was 0.51, with the aggressive scaling then being B̂ = B̂× 2 (overbid-
ding, based on our theorized value of 1). This strategy can intuitively be thought of “undercutting
until panic.”

Note that with this rule campaigns of length 1 will always be aggressively bid on. This is
because campaigns of length 1 have minimal room for error. In order to guarantee that our quality
score remains consistent, we must aggressively bid on them. In a sense, we prioritize completion
rather than the alternative of undercutting and gambling for additional profit when it comes to
the short term campaigns.

4.4 Computational Efficiency

In this section, we discuss the time complexity of the various heuristics and algorithms we calcu-
late in a game. We skip talking about initialization because this takes constant time, apart from
the initialization of a set of the three-characteristic market segments, which takes time linear to
the number of these (8 in this version of the game.) We will write the number of these market
segments as m and the number of campaigns up for auction each day as n for simplicity. We also
do not include the number of days each contract can run for in the calculations, as it will usually
just result in a constant multiple of n in any calculation.

4.4.1 Campaign Bids Function

As getting campaign bids is the first action requested of the agent each day, we perform some
setup work here.

1. First, we clear the campaigns in our known campaigns that have already expired, i.e. their
end date is before the current day. These campaigns no longer have influence on our calcu-
lations, so we discard them. To make this more efficient, we use a priority queue for storing
known campaigns, sorted on their end date. The only campaigns in this list are the one free
campaign we get every day and the campaigns we see up for auction in previous days; we
assume they are all in the list because we bid on all of them, meaning they must have a
winner. This makes the time it takes to remove the expired campaigns O(n), as the removal
time for each element is constant but we expect a constant fraction of the campaigns from
the previous days to have expired by the current day.

2. Next, we add our free campaign for the day to the known campaigns; adding to a priority
queue like this which contains some multiple of n campaigns in expectation takes O(log(n))
time.

3. Third, we update our heuristics for the competitiveness and pricing of the market. To update
our competitiveness factor, we check our active campaigns to see if we’ve won any from the
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last day. This operation takes O(n) time. Then, we iterate over each of the three-characteristic
market segments to estimate the pricing for each based on active campaigns. For each seg-
ment, we first check if we’ve cached the result for the current day in our map (impossible,
as we reset the cache each day.) This takes O(log(n)) time. Then, we iterate over each cam-
paign in the known campaign list and add the expected reach if the segment is a subset of
the campaign’s target segment. We then add a constant representing the expected amount of
competition from other agents. These calculations are outlined in subsubsection 4.2.1. These
calculations are essentially multiplying some constants together, so over all the market seg-
ments, the time complexity is O(m). So, the update of our pricing takes O(n log(n) + nm)
time.

4. Finally, we form our bids for the day. For each campaign available on a given day, we calcu-
late its difficulty based on the market segments it covers. The difficulty is computed based
on the average pricing of the segments it covers over the days the campaign covers. We cache
the results here for each segment on each day, so we can expect this to take O(n log(n) + m)
time: n contracts, with each one’s difficulty calculation taking log(n) time, plus a possible
need to calculate and cache expected difficulties for each segment a few days in advance
(O(m).) The computations after determining the difficulty of a contract are constant. So, the
bid calculations take O(n log(n) + m) overall.

4.4.2 Impression Bidding

When calculating our optimal reach and bid pricing, nearly all of these operations happen in con-
stant time. The only complexity is when we use our campaign difficulty to estimate the optimal
reach to target; this takes log(n) time as we will have the data for each segment already cached at
this point.

4.4.3 Overall Complexity

Overall, summing these complexities together and reducing, we get that the time complexity for
our agent’s runtime each day is O(n log(n) + nm), which is more than fast enough.

4.5 Changes During Live Competition

As some teams did not develop their bots until later, we were able to observe the effects of a
single team joining the competition with a competitive agent when their previous agent had 0
utility. Essentially, this simulated a new agent joining the competition. We observed that in the
multiple cases where this happened, everyone’s utilities dropped, which makes sense: there was
more competition and prices rose. To account for this, we decided to change the fixed percentage
in subsection 4.3 to 0.75, a higher percentage, as we believed that more competition meant we
would have to try harder for impressions. We then lowered the multiplier on the last day to
1.36, which would bring our bid just above 1 on the last day, as we had previously done. We
immediately saw a rebound in results; this whole experience is shown in Figure 2. This decision
also somewhat followed our theorized optimal strategy–in order to maintain quality score and
therefore competitiveness, we had to bid higher.
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Figure 2: With the addition of multiple new agents (trash, AlexSean, :(){:—:&};:), we see our agent
banger’s performance trending downwards. We implemented the change in bidding percentage
before the 12:00 update, and immediately our results separated from the rest of the teams.
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